Do you want to publish a course? Click here

Cryogenic coaxial microwave filters

138   0   0.0 ( 0 )
 Added by Giovanna Tancredi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The careful filtering of microwave electromagnetic radiation is critical for controlling the electromagnetic environment for experiments in solid-state quantum information processing and quantum metrology at millikelvin temperatures. We describe the design and fabrication of a coaxial filter assembly and demonstrate that its performance is in excellent agreement with theoretical modelling. We further perform an indicative test of the operation of the filters by making current-voltage measurements of small, underdamped Josephson junctions at 15 mK.



rate research

Read More

In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon.
Superconducting electronics often require high-density microwave interconnects capable of transporting signals between temperature stages with minimal loss, cross talk, and heat conduction. We report the design and fabrication of superconducting 53 wt% Nb-47 wt% Ti (Nb47Ti) FLexible coAXial ribbon cables (FLAX). The ten traces each consist of a 0.076 mm O.D. NbTi inner conductor insulated with PFA (0.28 mm O.D.) and sheathed in a shared 0.025 mm thick Nb47Ti outer conductor. The cable is terminated with G3PO coaxial push-on connectors via stainless steel capillary tubing (1.6 mm O.D., 0.13 mm thick) soldered to a coplanar wave guide transition board. The 30 cm long cable has 1 dB of loss at 8 GHz with -60 dB nearest-neighbor forward cross talk. The loss is 0.5 dB more than commercially available superconducting coax likely due to impedance mismatches caused by manufacturing imperfections in the cable. The reported cross talk is 30 dB lower than previously developed laminated NbTi-onKapton microstrip cables. We estimate the heat load from 1 K to 90 mK to be 20 nW per trace, approximately half the computed load from the smallest commercially available superconducting coax from CryoCoax
A wide variety of applications of microwave cavities, such as measurement and control of superconducting qubits, magnonic resonators, and phase noise filters, would be well served by having a highly tunable microwave resonance. Often this tunability is desired in situ at low temperatures, where one can take advantage of superconducting cavities. To date, such cryogenic tuning while maintaining a high quality factor has been limited to $sim500$ MHz. Here we demonstrate a three-dimensional superconducting microwave cavity that shares one wall with a pressurized volume of helium. Upon pressurization of the helium chamber the microwave cavity is deformed, which results in in situ tuning of its resonant frequency by more than 5 GHz, greater than 60% of the original 8 GHz resonant frequency. The quality factor of the cavity remains approximately constant at $approx7times 10^{3}$ over the entire range of tuning. As a demonstration of its usefulness, we implement a tunable cryogenic phase noise filter, which reduces the phase noise of our source by approximately 10 dB above 400 kHz.
86 - L. Brunetti , L. Oberto 2021
Primary power standards in the microwave domain are realized using a calorimetric technique, usually identified with the used measurement system, i.e., the microcalorimeter. It is adjusted for measurement of power ratios with a relative accuracy that, after an appropriate system calibration, is of order of 10^-3, at least in the microwave domain (1 GHz-18 GHz). Hereby we describe the calibration process implemented at the Istituto Nazionale di Ricerca Metrologica (Italy) for realizing a coaxial power standard based on indirect heating thermocouples. Particular regard is devoted to describe the nearly ideal thermal load used for determining the microcalorimeter losses and their influence on the measurand accuracy.
The Simons Observatory (SO) is an upcoming polarization-sensitive Cosmic Microwave Background (CMB) experiment on the Cerro Toco Plateau (Chile) with large overlap with other optical and infrared surveys (e.g., DESI, LSST, HSC). To enable the readout of bigO(10,000) detectors in each of the four telescopes of SO, we will employ the microwave SQUID multiplexing technology. With a targeted multiplexing factor of bigO{(1,000)}, microwave SQUID multiplexing has never been deployed on the scale needed for SO. Here we present the design of the cryogenic coaxial cable and RF component chain that connects room temperature readout electronics to superconducting resonators that are coupled to Transition Edge Sensor bolometers operating at sub-Kelvin temperatures. We describe design considerations including cryogenic RF component selection, system linearity, noise, and thermal power dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا