Do you want to publish a course? Click here

Inflation and cosmic (super)strings: implications of their intimate relation revisited

171   0   0.0 ( 0 )
 Added by Mairi Sakellariadou
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We briefly discuss constraints on supersymmetric hybrid inflation models and examine the consistency of brane inflation models. We then address the implications for inflationary scenarios resulting from the strong constraints on the cosmic (super)string tension imposed from the most recent cosmic microwave background temperature anisotropies data.



rate research

Read More

Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally, and the special features that might discriminate between ordinary cosmic strings and superstrings.
The NANOGrav collaboration has recently presented its pulsar timing array data which seem compatible with the presence of a stochastic gravity wave background emitted by cosmic strings with a dimensionless string tension $Gmusimeq 2times 10^{-11}-3times 10^{-10}$ at $95%$ confidence level ($G$ is Newtons constant and $mu$ denotes the string tension). However, there is some tension between these results and the previous pulsar timing array bound $Gmulesssim 4times 10^{-11}$ from the PPTA experiment. We propose a relaxation of this tension by invoking primordial inflation which partially inflates the string network. The latter re-enters the horizon at later times after the end of inflation, and thus the short string loops are not produced. This leads to a reduction of the gravity wave spectrum which is more pronounced at higher frequencies. The reconciliation of the NANOGrav results with the PPTA bound is possible provided that the strings re-enter the horizon at adequately late times. We consider an example of a realistic $SO(10)$ model incorporating successful inflation driven by a gauge singlet real scalar field with a Coleman-Weinberg potential. This model leads to the production of intermediate scale topologically stable cosmic strings that survive inflation. We show regions of the parameter space where the tension between NANOGrav and PPTA is alleviated. Finally, we present an example in which both monopoles and strings survive inflation with the above tension resolved.
67 - Yanou Cui 2019
A standard expectation of primordial cosmological inflation is that it dilutes all relics created before its onset to unobservable levels. We present a counterexample to this expectation by demonstrating that a network of cosmic strings diluted by inflation can regrow to a level that is potentially observable today in gravitational waves~(GWs). In contrast to undiluted cosmic strings, whose primary GW signals are typically in the form of a stochastic GW background, the leading signal from a diluted cosmic string network can be distinctive bursts of GWs within the sensitivity reach of current and future GW observatories.
We explore the potential of measurements of cosmological effects, such as neutrino spectral distortions from the neutrino decoupling and neutrino clustering in our Galaxy, via cosmic neutrino capture on tritium. We compute the precise capture rates of each neutrino species including such cosmological effects to probe them. These precise estimates of capture rates are also important in that the would-be deviation of the estimated capture rate could suggest new neutrino physics and/or a non-standard evolution of the universe. In addition, we discuss the precise differences between the capture rates of Dirac and Majorana neutrinos for each species, the required energy resolutions to detect each neutrino species and the method of reconstruction of the spectrum of cosmic neutrinos via the spectrum of emitted electrons, with emphasis on the PTOLEMY experiment.
Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion fields in the framework of string theory. We present such a helical model which naturally becomes a model with a single cosine potential, and which in turn reduces to the (quadratic) chaotic inflation model in the super-Planckian limit. The slightly smaller tensor/scalar ratio $r$ of models of this type provides a signature of the periodic nature of an axion potential. We present a simple way to quantify this distinctive feature. As axions are intimately related to strings/vortices and strings are ubiquitous in string theory, we explore the possibility that cosmic strings may be contributing to the B-mode polarization anisotropy observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا