Do you want to publish a course? Click here

Helical Inflation and Cosmic Strings

282   0   0.0 ( 0 )
 Added by Sung Ching Sam Wong
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion fields in the framework of string theory. We present such a helical model which naturally becomes a model with a single cosine potential, and which in turn reduces to the (quadratic) chaotic inflation model in the super-Planckian limit. The slightly smaller tensor/scalar ratio $r$ of models of this type provides a signature of the periodic nature of an axion potential. We present a simple way to quantify this distinctive feature. As axions are intimately related to strings/vortices and strings are ubiquitous in string theory, we explore the possibility that cosmic strings may be contributing to the B-mode polarization anisotropy observed.



rate research

Read More

In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invariance while violating isotropy. This generates quadrupolar statistical anisotropy in CMB maps which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of string is obtained from the quadrupolar anisotropy and argue that the mass scale of underlying theory responsible for the formation of string can not be much higher than the GUT scale. The predictions of string for the diagonal and off-diagonal components of CMB angular power spectrum are presented.
Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simulations of the density wake from a cosmic string, we examine a variety of filament structure probes. We show that the largest effect of the cosmic string is an overdensity in the filament distribution around the string wake. The signal from the overdensity is stronger at higher redshift, and more robust with a wider field. We analyze the spatial distribution of filaments from a publicly available catalog of filaments built from SDSS galaxies. With existing data, we find no evidence for the presence of a cosmic string wake with string tension parameter $Gmu$ above $5times 10^{-6}$. However, we project WFIRST will be able to detect a signal from such a wake at the $99%$ confidence level at redshift $z=2$, with significantly higher confidence and the possibility of probing lower tensions ($Gmu sim 10^{-6}$), at $z=10$. The sensitivity of this method is not competitive with constraints derived from the CMB. However, it provides an independent discovery channel at low redshift, which could be a smoking-gun in scenarios where the CMB bound can be weakened.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
We present an analytic study of cosmic superconducting chiral string collisions in Minkowski space, applying the kinematic constraints that arise from the relevant generalization of the Nambu-Goto action. In particular, we revisit the solution for chiral superconducting cosmic strings and demonstrate that Y junction production for such strings is possible. We consider the collision of chiral current-carrying straight strings and obtain the region in angle-velocity space that allows the production of string junctions. This study contributes to the understanding of the complex evolution of chiral superconducting string networks.
We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisotropy. We find that the B-mode polarization due to kinks is comparable to that induced by the motion of the string network and hence the contribution of GWs from kinks is important for estimating the B-mode power spectrum originating from cosmic strings. If the tension of cosmic strings mu is large enough i.e., Gmu >~ 10^{-8}, B-mode polarization induced by cosmic strings can be detected by future CMB experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا