Do you want to publish a course? Click here

Local Average Consensus in Distributed Measurement of Spatial-Temporal Varying Parameters: 1D Case

129   0   0.0 ( 0 )
 Added by Kai Cai
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We study a new variant of consensus problems, termed `local average consensus, in networks of agents. We consider the task of using sensor networks to perform distributed measurement of a parameter which has both spatial (in this paper 1D) and temporal variations. Our idea is to maintain potentially useful local information regarding spatial variation, as contrasted with reaching a single, global consensus, as well as to mitigate the effect of measurement errors. We employ two schemes for computation of local average consensus: exponential weighting and uniform finite window. In both schemes, we design local average consensus algorithms to address first the case where the measured parameter has spatial variation but is constant in time, and then the case where the measured parameter has both spatial and temporal variations. Our designed algorithms are distributed, in that information is exchanged only among neighbors. Moreover, we analyze both spatial and temporal frequency responses and noise propagation associated with the algorithms. The tradeoffs of using local consensus, as compared to standard global consensus, include higher memory requirement and degraded noise performance. Arbitrary updating weights and random spacing between sensors are analyzed in the proposed algorithms.



rate research

Read More

106 - Kai Cai , Hideaki Ishii 2013
We have recently proposed a surplus-based algorithm which solves the multi-agent average consensus problem on general strongly connected and static digraphs. The essence of that algorithm is to employ an additional variable to keep track of the state changes of each agent, thereby achieving averaging even though the state sum is not preserved. In this note, we extend this approach to the more interesting and challenging case of time-varying topologies: An extended surplus-based averaging algorithm is designed, under which a necessary and sufficient graphical condition is derived that guarantees state averaging. The derived condition requires only that the digraphs be arbitrary strongly connected in a emph{joint} sense, and does not impose balanced or symmetric properties on the network topology, which is therefore more general than those previously reported in the literature.
We consider the problem of distributed average consensus in a sensor network where sensors exchange quantized information with their neighbors. We propose a novel quantization scheme that exploits the increasing correlation between the values exchanged by the sensors throughout the iterations of the consensus algorithm. A low complexity, uniform quantizer is implemented in each sensor, and refined quantization is achieved by progressively reducing the quantization intervals during the convergence of the consensus algorithm. We propose a recurrence relation for computing the quantization parameters that depend on the network topology and the communication rate. We further show that the recurrence relation can lead to a simple exponential model for the size of the quantization step size over the iterations, whose parameters can be computed a priori. Finally, simulation results demonstrate the effectiveness of the progressive quantization scheme that leads to the consensus solution even at low communication rate.
This paper investigates the problem of distributed network-wide averaging and proposes a new greedy gossip algorithm. Instead of finding the optimal path of each node in a greedy manner, the proposed approach utilises a suboptimal communication path by performing greedy selection among randomly selected active local nodes. Theoretical analysis on convergence speed is also performed to investigate the characteristics of the proposed algorithm. The main feature of the new algorithm is that it provides great flexibility and well balance between communication cost and convergence performance introduced by the stochastic sampling strategy. Extensive numerical simulations are performed to validate the analytic findings.
We address the optimal transmit power allocation problem (from the sensor nodes (SNs) to the fusion center (FC)) for the decentralized detection of an unknown deterministic spatially uncorrelated signal which is being observed by a distributed wireless sensor network. We propose a novel fully distributed algorithm, in order to calculate the optimal transmit power allocation for each sensor node (SN) and the optimal number of quantization bits for the test statistic in order to match the channel capacity. The SNs send their quantized information over orthogonal uncorrelated channels to the FC which linearly combines them and makes a final decision. What makes this scheme attractive is that the SNs share with their neighbours just their individual transmit powers at the current states. As a result, the SN processing complexity is further reduced.
In this paper, we consider the problem of optimally coordinating the response of a group of distributed energy resources (DERs) in distribution systems by solving the so-called optimal power flow (OPF) problem. The OPF problem is concerned with determining an optimal operating point, at which some cost function, e.g., generation cost or power losses, is minimized, and operational constraints are satisfied. To solve the OPF problem, we propose distributed algorithms that are able to operate over time-varying communication networks and have geometric convergence rate. We solve the second-order cone program (SOCP) relaxation of the OPF problem for radial distribution systems, which is formulated using the so-called DistFlow model. Theoretical results are further supported by the numerical simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا