Do you want to publish a course? Click here

Constraining the dark cusp in the Galactic Center by long-period binaries

129   0   0.0 ( 0 )
 Added by Tal Alexander
 Publication date 2013
  fields Physics
and research's language is English
 Authors Tal Alexander




Ask ChatGPT about the research

Massive black holes (MBHs) in galactic nuclei are believed to be surrounded by a high density stellar cluster, whose mass is mostly in hard-to-detect faint stars and compact remnants. Such dark cusps dominate the dynamics near the MBH: a dark cusp in the Galactic center (GC) of the Milky Way would strongly affect orbital tests of General Relativity there; on cosmic scales, dark cusps set the rates of gravitational wave emission events from compact remnants that spiral into MBHs, and they modify the rates of tidal disruption events, to list only some implications. A recently discovered long-period massive young binary (P_12 <~ 1 yr, M_12 ~ O(100 M_sun), T_12 ~ 6x10^6 yr), only ~0.1 pc from the Galactic MBH (Pfuhl et al 2013), sets a lower bound on the 2-body relaxation timescale there, min t_rlx ~ (P_12/M_12)^(2/3)T_12 ~ 10^7 yr, and correspondingly, an upper bound on the stellar number density, max n ~ few x 10^8/<M_star^2> 1/pc^3, based on the binarys survival against evaporation by the dark cusp. However, a conservative dynamical estimate, the drain limit, implies t_rlx > O(10^8) yr. Such massive binaries are thus too short-lived and tightly bound to constrain a dense relaxed dark cusp. We explore here in detail the use of longer-period, less massive and longer-lived binaries (P_12 ~ few yr, M_12 ~ 2-4 M_sun, T_12 ~ 10^8-10^10 yr), presently just below the detection threshold, for probing the dark cusp, and develop the framework for translating their future detections among the giants in the GC into dynamical constraints.



rate research

Read More

The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits, and were probably not formed in-situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inwards toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binarys hardening is caused by the formation of spiral tails lagging the stars inside the binarys Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binarys Hill radius, and that it is much shorter than the migration timescale. We discuss some implications of the binarys hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high velocity stars in the Galactic halo.
The population of young stars near the Supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematics measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues to the origin of these mysterious young stars. However many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities, given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus neglecting the contribution of binaries can significantly vary the inferred stars orbital properties. While the disk orientation is unaffected the apparent disks 2D width is increased to about 11.2deg, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23.This is consistent with the observed average eccentricity of the stars in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.
63 - R. Genzel , R. Schoedel , T. Ott 2003
We analyze deep near-IR adaptive optics imaging as well as new proper motion data of the nuclear star cluster of the Milky Way. The surface density distribution of faint stars peaks within 0.2 of the black hole candidate SgrA*. The radial density distribution of this stellar cusp follows a power law of exponent 1.3-1.4. The K-band luminosity function of the overall nuclear stellar cluster (within 9 of SgrA*) resembles that of the large scale, Galactic bulge, but shows an excess of stars at K<14. We find that most of the massive early type stars at distances 1-10 from SgrA* are located in two rotating and geometrically thin disks. These disks are inclined at large angles and counter-rotate with respect to each other. Their stellar content is essentially the same, indicating that they formed at the same time. The star closest to SgrA* in 2002, S2, exhibits a 3.8 micron excess. We propose that the mid-IR emission either comes from the accretion flow around the black hole itself, or from dust in the accretion flow that is heated by the ultra-violet emission of S2.
We use the Milky Ways nuclear star cluster (NSC) to test the existence of a dark matter soliton core, as predicted in ultra-light dark matter (ULDM) models. Since the soliton core size is proportional to mDM^{-1}, while the core density grows as mDM^{2}, the NSC (dominant stellar component within about 3 pc) is sensitive to a specific window in the dark matter particle mass, mDM. We apply a spherical isotropic Jeans model to fit the NSC line-of-sight velocity dispersion data, assuming priors on the Milky Ways supermassive black hole (SMBH) mass taken from the Gravity Collaboration et al. (2020) and stellar density profile taken from Gallego-Cano et al. (2018). We find that the current observational data reject the existence of a soliton core for a single ULDM particle with mass in the range 10^{-20.0} < mDM < 10^{-18.5} eV, assuming that the soliton core structure is not affected by the Milky Ways SMBH. We test our methodology on mock data, confirming that we are sensitive to the same range in ULDM mass as for the real data. Dynamical modelling of a larger region of the Galactic centre, including the nuclear stellar disc, promises tighter constraints over a broader range of mDM. We will consider this in future work.
We calculate the most stringent constraints up to date on the parameter space for sterile neutrino warm dark matter models possessing a radiative decay channel into X-rays. These constraints arise from the X-ray flux observations from the Galactic center (central parsec), taken by the XMM and NuSTAR missions. We compare the results obtained from using different dark matter density profiles for the Milky Way, such as NFW, Burkert or Einasto, to that produced by the Ruffini-Arguelles-Rueda (RAR) fermionic model, which has the distinct feature of depending on the particle mass. We show that due to the novel core-halo morphology present in the RAR profile, the allowed particle mass window is narrowed down to $m_ssim 10-15$ keV, when analyzed within the $ u$MSM sterile neutrino model. We further discuss on the possible effects in the sterile neutrino parameter-space bounds due to a self-interacting nature of the dark matter candidates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا