Do you want to publish a course? Click here

Binaries migrating in a gaseous disk: Where are the Galactic center binaries?

104   0   0.0 ( 0 )
 Added by Clement Baruteau
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits, and were probably not formed in-situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inwards toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binarys hardening is caused by the formation of spiral tails lagging the stars inside the binarys Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binarys Hill radius, and that it is much shorter than the migration timescale. We discuss some implications of the binarys hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high velocity stars in the Galactic halo.

rate research

Read More

The population of young stars near the Supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematics measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues to the origin of these mysterious young stars. However many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities, given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus neglecting the contribution of binaries can significantly vary the inferred stars orbital properties. While the disk orientation is unaffected the apparent disks 2D width is increased to about 11.2deg, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23.This is consistent with the observed average eccentricity of the stars in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.
85 - O. Demircan , .I. Bulut 2014
Up to present date, no circumbinary planet around contact binaries were discovered neither by transit method nor by the minima times variation, although they are known having third component stars around. We thus ask: where are the circumbinary planets of contact binaries? By considering the physical and geometrical parameters we simulated the light curves of contact binaries with possible transiting circumbinary jovian planets. It seems either the circumbinary jovian planets are not formed around contact binaries, probably due to dynamical effects of the binary and third component stars, or they are present but the discovery of such planets were not possible so far due to larger distortions then expected in the photometric data and in the minima times.
There is a dense group of OB and Wolf-Rayet stars within a fraction of a parsec from the super-massive black hole (SMBH) at the Galactic Center. These stars appear to be coeval and relatively massive. A subgroup of these stars orbits on the same plane. If they emerged with low to modest eccentricity orbits from a common gaseous disk around the central super-massive black hole, their inferred lifespan would not be sufficiently long to account for the excitation of their high orbital eccentricity through dynamical relaxation. Here we analyze the secular perturbation on Galactic Center stars by an intermediate-mass companion (IMC) as a potential mechanism to account for these young disk stars high eccentricity. This IMC may be either an intermediate-mass black hole (IMBH) or a compact cluster such as IRS-13E. If its orbital angular momentum vector is anti-parallel to that of the disk stars, this perturbation would be effective in exciting the eccentricity of stars with orbital precession rates which resonate with IMCs precession rate. If it orbits around the SMBH in the same direction as the disk stars, the eccentricity of the young stars can still be highly excited by the IMC during the depletion of their natal disk, possible associated with the launch of the Fermi bubble. In this scenario, IMCs precession rate decreases and its secular resonance sweeps through the proximity of the young stars. We carry out numerical simulations with various inclination angles between the orbits of IMC and the disk stars and show this secular interaction is a robust mechanism to excite the eccentricity and inclination of some disk stars.
We present the results of an expanded, long-term radial velocity search (25 yrs) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely-held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007-2015 to search for variations on the order of a few years and then combined with earlier observations from 1991-1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35-135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence found for multi-year variations that might be due to a binary companion. This object shows marginally-significant evidence of a two-year period of low semi-amplitude which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, <0.2 M(sun), or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.
104 - Tal Alexander 2013
Massive black holes (MBHs) in galactic nuclei are believed to be surrounded by a high density stellar cluster, whose mass is mostly in hard-to-detect faint stars and compact remnants. Such dark cusps dominate the dynamics near the MBH: a dark cusp in the Galactic center (GC) of the Milky Way would strongly affect orbital tests of General Relativity there; on cosmic scales, dark cusps set the rates of gravitational wave emission events from compact remnants that spiral into MBHs, and they modify the rates of tidal disruption events, to list only some implications. A recently discovered long-period massive young binary (P_12 <~ 1 yr, M_12 ~ O(100 M_sun), T_12 ~ 6x10^6 yr), only ~0.1 pc from the Galactic MBH (Pfuhl et al 2013), sets a lower bound on the 2-body relaxation timescale there, min t_rlx ~ (P_12/M_12)^(2/3)T_12 ~ 10^7 yr, and correspondingly, an upper bound on the stellar number density, max n ~ few x 10^8/<M_star^2> 1/pc^3, based on the binarys survival against evaporation by the dark cusp. However, a conservative dynamical estimate, the drain limit, implies t_rlx > O(10^8) yr. Such massive binaries are thus too short-lived and tightly bound to constrain a dense relaxed dark cusp. We explore here in detail the use of longer-period, less massive and longer-lived binaries (P_12 ~ few yr, M_12 ~ 2-4 M_sun, T_12 ~ 10^8-10^10 yr), presently just below the detection threshold, for probing the dark cusp, and develop the framework for translating their future detections among the giants in the GC into dynamical constraints.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا