Do you want to publish a course? Click here

Modified equipartition calculation for supernova remnants. Cases alpha =0.5 and alpha =1

126   0   0.0 ( 0 )
 Added by Bojan Arbutina
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The equipartition or minimum-energy calculation is a well-known procedure for estimating magnetic field strength and total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous papers we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5<alpha <1. Here we extend the analysis to SNRs with alpha =0.5 and alpha =1.



rate research

Read More

Determination of the magnetic field strength in the interstellar medium is one of the most complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Besides Zeeman effect and Faraday rotation, the equipartition or the minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. Despite of its approximate character, it remains a useful tool, especially when there is no other data about the magnetic field in a source. In this paper we give a modified calculation which we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). Finally, we present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The web application for calculation of the magnetic field strength of SNRs is available at http://poincare.matf.bg.ac.rs/~arbo/eqp/.
100 - Y. Fujiwara 2004
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are reproduced within 100 - 200 keV accuracy.
A novel diagnostic of cosmic-ray modified shocks by polarimetry of H $alpha$ emissions is suggested. In a cosmic-ray modified shock, the pressure of cosmic rays is sufficiently high compared to the upstream ram pressure to force the background plasma to decelerate (measured in the shock rest frame). Simultaneously, a fraction of the hydrogen atoms co-existing in the upstream plasma collide with the decelerated protons and undergo charge-exchange reactions. As a result, hydrogen atoms with the same bulk velocity of the decelerated protons are generated. We show that when the shock is observed from edge-on, the H $alpha$ radiated by these upstream hydrogen atoms is linearly polarized with a sizable degree of a few per cent as a result of resonant scattering of Ly $beta$. The polarization direction depends strongly on the velocity modification; the direction is parallel to the shock surface for the case of no modification, while the direction is parallel to the shock velocity for the case of a modified shock.
105 - Daichi Tsuna 2021
In a failed supernova, partial ejection of the progenitors outer envelope can occur due to weakening of the cores gravity by neutrino emission in the protoneutron star phase. We consider emission when this ejecta sweeps up the circumstellar material, analogous to supernova remnants (SNRs). We focus on failed explosions of blue supergiants, and find that the emission can be bright in soft X-rays. Due to its soft emission, we find that sources in the Large Magellanic Cloud (LMC) are more promising to detect than those in the Galactic disk. These remnants are characteristic in smallness ($lesssim 10$ pc) and slowness (100s of ${rm km s^{-1}}$) compared to typical SNRs. Although the expected number of detectable sources is small (up to a few by eROSITA 4-year all-sky survey), prospects are better for deeper surveys targeting the LMC. Detection of these failed SNRs will realize observational studies of mass ejection upon black hole formation.
We perform a sub-threshold follow-up search for continuous nearly-monochromatic gravitational waves from the central compact objects associated with the supernova remnants Vela Jr., Cassiopeia A, and SNR G347.3$-$0.5. Across the three targets, we investigate the most promising ~ 10,000 combinations of gravitational wave frequency and frequency derivative values, based on the results from an Einstein@Home search of the LIGO O1 observing run data, dedicated to these objects. The selection threshold is set so that a signal could be confirmed using the newly released O2 run LIGO data. In order to achieve best sensitivity we perform two separate follow-up searches, on two distinct stretches of the O2 data. Only one candidate survives the first O2 follow-up investigation, associated with the central compact object in SNR G347.3-0.5, but it is not conclusively confirmed. In order to assess a possible astrophysical origin we use archival X-ray observations and search for amplitude modulations of a pulsed signal at the putative rotation frequency of the neutron star and its harmonics. This is the first extensive electromagnetic follow-up of a continuous gravitational wave candidate performed to date. No significant associated signal is identified. New X-ray observations contemporaneous with the LIGO O3 run will enable a more sensitive search for an electromagnetic counterpart. A focused gravitational wave search in O3 data based on the parameters provided here should be easily able to shed light on the nature of this outlier. Noise investigations on the LIGO instruments could also reveal the presence of a coherent contamination.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا