Do you want to publish a course? Click here

Herschel/PACS Survey of protoplanetary disks in Taurus/Auriga -- Observations of [OI] and [CII], and far infrared continuum

188   0   0.0 ( 0 )
 Added by Goran Sandell
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Herschel Space Observatory was used to observe ~ 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. PACS was used to measure the continuum as well as several gas tracers such as [OI] 63 mu m, [OI] 145 mu m, [CII] 158 mu m, OH, H2O and CO. The strongest line seen is [OI] at 63 mu m. We find a clear correlation between the strength of the [OI] 63 mu m line and the 63 mu m continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk ($<$ 50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [OI] 63 mu m is fainter in transitional stars than in normal Class II disks. Simple SED models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [CII] 158 mu m emission is only detected in strong outflow sources. The observed line ratios of [OI] 63 mu m to [OI] 145 mu m are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or PDR emission. We detect no Class III object in [OI] 63 mu m and only three in continuum, at least one of which is a candidate debris disk.



rate research

Read More

M33 is a gas rich spiral galaxy of the Local Group. We investigate the relationship between the two major gas cooling lines and the total infrared (TIR) dust continuum. We mapped the emission of gas and dust in M33 using the far-infrared lines of [CII] and [OI](63um) and the TIR. The line maps were observed with Herschel/PACS. These maps have 50pc resolution and form a ~370pc wide stripe along its major axis covering the sites of bright HII regions, but also more quiescent arm and inter-arm regions from the southern arm at 2kpc galacto-centric distance to the south out to 5.7kpc distance to the north. Full-galaxy maps of the continuum emission at 24um from Spitzer/MIPS, and at 70um, 100um, and 160um from PACS were combined to obtain a map of the TIR. TIR and [CII] intensities are correlated over more than two orders of magnitude. The range of TIR translates to a range of far ultraviolet (FUV) emission of G0,obs~2 to 200 in units of the average Galactic radiation field. The binned [CII]/TIR ratio drops with rising TIR, with large, but decreasing scatter. Fits of modified black bodies (MBBs) to the continuum emission were used to estimate dust mass surface densities and total gas column densities. A correction for possible foreground absorption by cold gas was applied to the [OI] data before comparing it with models of photon dominated regions (PDRs). Most of the ratios of [CII]/[OI] and ([CII]+[OI])/TIR are consistent with two model solutions. The median ratios are consistent with one solution at n~2x10^2 cm-3, G0~60, and and a second low-FUV solution at n~10^4 cm-3, G0~1.5. The bulk of the gas along the lines-of-sight is represented by a low-density, high-FUV phase with low beam filling factors ~1. A fraction of the gas may, however, be represented by the second solution.
124 - L. Podio , I. Kamp , D. Flower 2012
Observations of the atomic and molecular line emission associated with jets and outflows emitted by young stellar objects can be used to trace the various evolutionary stages they pass through as they evolve to become main sequence stars. To understand the relevance of atomic and molecular cooling in shocks, and how accretion and ejection efficiency evolves with the source evolutionary state, we will study the far-infrared counterparts of bright optical jets associated with Class I and II sources in Taurus (T Tau, DG Tau A, DG Tau B, FS Tau A+B, and RW Aur). We have analysed Herschel/PACS observations of a number of atomic ([OI]63um, 145um, [CII]158um) and molecular (high-J CO, H2O, OH) lines, collected within the OTKP GASPS. To constrain the origin of the detected lines we have compared the FIR emission maps with the emission from optical-jets and millimetre-outflows, and the line fluxes and ratios with predictions from shock and disk models. All of the targets are associated with extended emission in the atomic lines correlated with the direction of the optical jet/mm-outflow. The atomic lines can be excited in fast dissociative J-shocks. The molecular emission, on the contrary, originates from a compact region, that is spatially and spectrally unresolved. Slow C- or J- shocks with high pre-shock densities reproduce the observed H2O and high-J CO lines; however, the disk and/or UV-heated outflow cavities may contribute to the emission. While the cooling is dominated by CO and H2O lines in Class 0 sources, [OI] becomes an important coolant as the source evolves and the environment is cleared. The cooling and mass loss rates estimated for Class II and I sources are one to four orders of magnitude lower than for Class 0 sources. This provides strong evidence to indicate that the outflow activity decreases as the source evolves.
Gas plays a major role in the dynamical evolution of protoplanetary discs. Its coupling with the dust is the key to our understanding planetary formation. Studying the gas content is therefore a crucial step towards understanding protoplanetary discs evolution. Such a study can be made through spectroscopic observations of emission lines in the far-infrared, where some of the most important gas coolants emit, such as the [OI] 3P1-3 P2 transition at 63.18 microns. We aim at characterising the gas content of protoplanetary discs in the intermediate-aged Chamaeleon II (Cha II) star forming region. We also aim at characterising the gaseous detection fractions within this age range, which is an essential step tracing gas evolution with age in different star forming regions. We obtained Herschel-PACS line scan spectroscopic observations at 63 microns of 19 Cha II Class I and II stars. The observations were used to trace [OI] and o-H2O at 63 microns. The analysis of the spatial distribution of [OI], when extended, can be used to understand the origin of the emission. We have detected [OI] emission toward seven out of the nineteen systems observed, and o-H2O emission at 63.32 microns in just one of them, Sz 61. Cha II members show a correlation between [OI] line fluxes and the continuum at 70 microns, similar to what is observed in Taurus. We analyse the extended [OI] emission towards the star DK Cha and study its dynamical footprints in the PACS Integral Field Unit (IFU). We conclude that there is a high velocity component from a jet combined with a low velocity component with an origin that may be a combination of disc, envelope and wind emission. The stacking of spectra of objects not detected individually in [OI] leads to a marginal 2.6sigma detection that may indicate the presence of gas just below our detection limits for some, if not all, of them.
We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, $Sigma_{rm IR}$. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is $n_{rm e}$ = 41 cm$^{-3}$. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, $n_{rm H}$, and intensity of the interstellar radiation field, in units of G$_0$, and find G$_0$/$n_{rm H}$ ratios ~0.1-50 cm$^3$, with ULIRGs populating the upper end of the distribution. There is a relation between G$_0$/$n_{rm H}$ and $Sigma_{rm IR}$, showing a critical break at $Sigma_{rm IR}^{star}$ ~ 5 x 10$^{10}$ Lsun/kpc$^2$. Below $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ remains constant, ~0.32 cm$^3$, and variations in $Sigma_{rm IR}$ are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ increases rapidly with $Sigma_{rm IR}$, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources.
We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observations and the linear behavior of the PACS bolometer source fluxes over more than four orders of magnitude (from mJy levels up to more than 1000 Jy). Our results show the great potential of using the observed solar system targets for cross-calibration purposes with other ground-based, airborne, and space-based instruments and projects. At the same time, the PACS results will lead to improved model solutions for future calibration applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا