No Arabic abstract
The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-{alpha} (DBL{alpha}) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBL{alpha} classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.
Exploiting recent developments in information theory, we propose, illustrate, and validate a principled information-theoretic algorithm for module discovery and resulting measure of network modularity. This measure is an order parameter (a dimensionless number between 0 and 1). Comparison is made to other approaches to module-discovery and to quantifying network modularity using Monte Carlo generated Erdos-like modular networks. Finally, the Network Information Bottleneck (NIB) algorithm is applied to a number of real world networks, including the social network of coauthors at the APS March Meeting 2004.
An agent-based model for firms dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents is described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the profit maximization principle is suppressed by a concept of going concern. Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.
We show, that the specific distribution of genes length, which is observed in natural genomes, might be a result of a growth process, in which a single length scale $L(t)$ develops that grows with time as $t^{1/3}$. This length scale could be associated with the length of the longest gene in an evolving genome. The growth kinetics of the genes resembles the one observed in physical systems with conserved ordered parameter. We show, that in genome this conservation is guaranteed by compositional compensation along DNA strands of the purine-like trends introduced by genes. The presented mathematical model is the modified Bak-Sneppen model of critical self-organization applied to the one-dimensional system of $N$ spins. The spins take discrete values, which represent genes length.
The leaves of the Coriandrum sativum plant, known as cilantro or coriander, are widely used in many cuisines around the world. However, far from being a benign culinary herb, cilantro can be polarizing---many people love it while others claim that it tastes or smells foul, often like soap or dirt. This soapy or pungent aroma is largely attributed to several aldehydes present in cilantro. Cilantro preference is suspected to have a genetic component, yet to date nothing is known about specific mechanisms. Here we present the results of a genome-wide association study among 14,604 participants of European ancestry who reported whether cilantro tasted soapy, with replication in a distinct set of 11,851 participants who declared whether they liked cilantro. We find a single nucleotide polymorphism (SNP) significantly associated with soapy-taste detection that is confirmed in the cilantro preference group. This SNP, rs72921001, (p=6.4e-9, odds ratio 0.81 per A allele) lies within a cluster of olfactory receptor genes on chromosome 11. Among these olfactory receptor genes is OR6A2, which has a high binding specificity for several of the aldehydes that give cilantro its characteristic odor. We also estimate the heritability of cilantro soapy-taste detection in our cohort, showing that the heritability tagged by common SNPs is low, about 0.087. These results confirm that there is a genetic component to cilantro taste perception and suggest that cilantro dislike may stem from genetic variants in olfactory receptors. We propose that OR6A2 may be the olfactory receptor that contributes to the detection of a soapy smell from cilantro in European populations.
We analyze the synchronous firings of the salamander ganglion cells from the perspective of the complex network viewpoint where the networks links reflect the correlated behavior of firings. We study the time-aggregated properties of the resulting network focusing on its topological features. The behavior of pairwise correlations has been inspected in order to construct an appropriate measure that will serve as a weight of network connection.