Do you want to publish a course? Click here

Squeezed States and Hermite polynomials in a Complex Variable

174   0   0.0 ( 0 )
 Added by Katarzyna Gorska
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pur. Appl. Math. 14, 187 (1961)].



rate research

Read More

Current definitions of both squeezing operator and squeezed vacuum state are critically examined on the grounds of consistency with the underlying su(1,1) algebraic structure. Accordingly, the generalized coherent states for su(1,1) in its Schwinger two-photon realization are proposed as squeezed states. The physical implication of this assumption is that two additional degrees of freedom become available for the control of quantum optical systems. The resulting physical predictions are evaluated in terms of quadrature squeezing and photon statistics, while the application to a Mach-Zehnder interferometer is discussed to show the emergence of nonclassical regions, characterized by negative values of Mandels parameter, which cannot be anticipated by the current formulation, and then outline future possible use in quantum technologies.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4-dimensional surface in the Fock space ${cal F}$ (which is of course not flat), we can calculate its metric. On the other hand, we know that coherent-squeezed states satisfy the minimal uncertainty of Heisenberg under some condition imposed on the parameter space ${alpha, beta}$, so that we can study the metric from the view point of uncertainty principle. Then we obtain a surprising simple form (at least to us). We also make a brief review on Holonomic Quantum Computation by use of a simple model based on nonlinear Kerr effect and coherent-squeezed operators.
We explore squeezed coherent states of a 3-dimensional generalized isotonic oscillator whose radial part is the newly introduced generalized isotonic oscillator whose bound state solutions have been shown to admit the recently discovered $X_1$-Laguerre polynomials. We construct a complete set of squeezed coherent states of this oscillator by exploring the squeezed coherent states of the radial part and combining the latter with the squeezed coherent states of the angular part. We also prove that the three mode squeezed coherent states resolve the identity operator. We evaluate Mandels $Q$-parameter of the obtained states and demonstrate that these states exhibit sub-Possionian and super-Possionian photon statistics. Further, we illustrate the squeezing properties of these states, both in the radial and angular parts, by choosing appropriate observables in the respective parts. We also evaluate Wigner function of these three mode squeezed coherent states and demonstrate squeezing property explicitly.
74 - Jerome Martin 2016
Bells inequality for continuous-variable bipartite systems is studied. The inequality is expressed in terms of pseudo-spin operators and quantum expectation values are calculated for generic two-mode squeezed states characterized by a squeezing parameter $r$ and a squeezing angle $varphi$. Allowing for generic values of the squeezing angle is especially relevant when $varphi$ is not under experimental control, such as in cosmic inflation, where small quantum fluctuations in the early Universe are responsible for structures formation. Compared to previous studies restricted to $varphi=0$ and to a fixed orientation of the pseudo-spin operators, allowing for $varphi eq 0$ and optimizing the angular configuration leads to a completely new and rich phenomenology. Two dual schemes of approximation are designed that allow for comprehensive exploration of the squeezing parameters space. In particular, it is found that Bells inequality can be violated when the squeezing parameter $r$ is large enough, $rgtrsim 1.12$, and the squeezing angle $varphi$ is small enough, $varphilesssim 0.34,e^{-r}$.
We investigate experiments of continuous-variable quantum information processing based on the teleportation scheme. Quantum teleportation, which is realized by a two-mode squeezed vacuum state and measurement-and-feedforward, is considered as an elementary quantum circuit as well as quantum communication. By modifying ancilla states or measurement-and-feedforwards, we can realize various quantum circuits which suffice for universal quantum computation. In order to realize the teleportation-based computation we improve the level of squeezing, and fidelity of teleportation. With a high-fidelity teleporter we demonstrate some advanced teleportation experiments, i.e., teleportation of a squeezed state and sequential teleportation of a coherent state. Moreover, as an example of the teleportation-based computation, we build a QND interaction gate which is a continuous-variable analog of a CNOT gate. A QND interaction gate is constructed only with ancillary squeezed vacuum states and measurement-and-feedforwards. We also create continuous-variable four mode cluster type entanglement for further application, namely, one-way quantum computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا