Do you want to publish a course? Click here

Bells Inequalities for Continuous-Variable Systems in Generic Squeezed States

75   0   0.0 ( 0 )
 Added by Vincent Vennin
 Publication date 2016
  fields Physics
and research's language is English
 Authors Jerome Martin




Ask ChatGPT about the research

Bells inequality for continuous-variable bipartite systems is studied. The inequality is expressed in terms of pseudo-spin operators and quantum expectation values are calculated for generic two-mode squeezed states characterized by a squeezing parameter $r$ and a squeezing angle $varphi$. Allowing for generic values of the squeezing angle is especially relevant when $varphi$ is not under experimental control, such as in cosmic inflation, where small quantum fluctuations in the early Universe are responsible for structures formation. Compared to previous studies restricted to $varphi=0$ and to a fixed orientation of the pseudo-spin operators, allowing for $varphi eq 0$ and optimizing the angular configuration leads to a completely new and rich phenomenology. Two dual schemes of approximation are designed that allow for comprehensive exploration of the squeezing parameters space. In particular, it is found that Bells inequality can be violated when the squeezing parameter $r$ is large enough, $rgtrsim 1.12$, and the squeezing angle $varphi$ is small enough, $varphilesssim 0.34,e^{-r}$.



rate research

Read More

We investigate experiments of continuous-variable quantum information processing based on the teleportation scheme. Quantum teleportation, which is realized by a two-mode squeezed vacuum state and measurement-and-feedforward, is considered as an elementary quantum circuit as well as quantum communication. By modifying ancilla states or measurement-and-feedforwards, we can realize various quantum circuits which suffice for universal quantum computation. In order to realize the teleportation-based computation we improve the level of squeezing, and fidelity of teleportation. With a high-fidelity teleporter we demonstrate some advanced teleportation experiments, i.e., teleportation of a squeezed state and sequential teleportation of a coherent state. Moreover, as an example of the teleportation-based computation, we build a QND interaction gate which is a continuous-variable analog of a CNOT gate. A QND interaction gate is constructed only with ancillary squeezed vacuum states and measurement-and-feedforwards. We also create continuous-variable four mode cluster type entanglement for further application, namely, one-way quantum computation.
We propose a novel squeezed light source capable of meeting the stringent requirements of continuous variable quantum sampling. Using the effective $chi_2$ interaction induced by a strong driving beam in the presence of the $chi_3$ response in an integrated microresonator, our device is compatible with established nanophotonic fabrication platforms. With typical realistic parameters, squeezed states with a mean photon number of 10 or higher can be generated in a single consistent temporal mode at repetition rates in excess of 100MHz. Over 15dB of squeezing is achievable in existing ultra-low loss platforms.
246 - Zeng-Bing Chen , Yao Fu , 2014
It is a long-standing belief, as pointed out by Bell in 1986, that it is impossible to use a two-mode Gaussian state possessing a positive-definite Wigner function to demonstrate nonlocality as the Wigner function itself provides a local hidden-variable model. In particular, when one performs continuous-variable (CV) quadrature measurements upon a routinely generated CV entanglement, namely, the two-mode squeezed vacuum (TMSV) state, the resulting Wigner function is positive-definite and as such, the TMSV state cannot violate any Bell inequality using CV quadrature measurements. We show here, however, that a Bell inequality for CV states in terms of entropies can be quantum mechanically violated by the TMSV state with two coarse-grained quadrature measurements per site within experimentally accessible parameter regime. The proposed CV entropic Bell inequality is advantageous for an experimental test, especially for a possible loophole-free test of nonlocality, as the quadrature measurements can be implemented with homodyne detections of nearly 100% detection efficiency under current technology.
Bell inequalities (BIs) derived in terms of quantum probability statistics are extended to general bipartite-entangled states of arbitrary spins with parallel polarization. The original formula of Bell for the two-spin singlet is slightly modified in the parallel configuration, while, the inequality for- mulated by Clauser-Horne-Shimony-Holt remains not changed. The violation of BIs indeed resulted from the quantum non-local correlation for spin-1=2 case. However, the inequalities are always satisfied for the spin-1 entangled states regardless of parallel or antiparallel polarizations of two spins. The spin parity effect originally demonstrated with the antiparallel spin-polarizations (Mod. Phys. Lett. B28, 145004) still exists for the parallel case. The quantum non-locality does not lead to the violation for integer spins due to the cancellation of non-local interference effects by the quantum statistical-average. Again the violation of BIs seems a result of the measurement induced nontrivial Berry-phase for half-integer spins.
We present a scheme for demonstrating violation of Bells inequalities using a spin-1/2 system entangled with a pair of classically distinguishable wave packets in a harmonic potential. In the optical domain, such wave packets can be represented by coherent states of a single light mode. The proposed scheme involves standard spin-1/2 projections and measurements of the position and the momentum of the harmonic oscillator system, which for a light mode can be realized by means of homodyne detection. We discuss effects of imperfections, including non-unit efficiency of the homodyne detector, and point out a close link between the visibility of interference and violation of Bells inequalities in the described scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا