Do you want to publish a course? Click here

Spatial Inhomogeneity of the Superconducting Gap and Order Parameter in FeSe_{0.4}Te_{0.6}

174   0   0.0 ( 0 )
 Added by Udai Raj Singh Dr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a low temperature scanning tunneling microscopy and spectroscopy study of the iron chalcogenide superconductor FeSe_{0.4}Te_{0.6} with T_{C}~14 K. Spatially resolved measurements of the superconducting gap reveal substantial inhomogeneity on a nanometer length scale. Analysis of the structure of the gap seen in tunneling spectra by comparison with calculated spectra for different superconducting order parameters (s-wave, d-wave, and anisotropic s-wave) yields the best agreement for an order parameter with anisotropic s-wave symmetry with an anisotropy of ~40%. The temperature dependence of the superconducting gap observed in places with large and small gap size indicates that it is indeed the superconducting transition temperature which is inhomogeneous. The temperature dependence of the gap size is substantially larger than would be expected from BCS theory. An analysis of the local gap size in relation with the local chemical composition shows almost no correlation with the local concentration of Se-/Te-atoms at the surface.



rate research

Read More

The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors. However, even for the most extensively studied optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$, there remain outstanding controversies on its electronic structure and superconducting gap structure. Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements on the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductor using both Helium lamp and laser light sources. Our results indicate the flat band feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center. We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state. Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly. Around the zone corner, we observe a tiny electron-like band and an M-shaped band simultaneously in both the normal and superconducting states. The obtained gap size for the bands around the zone corner ($sim$5.5 meV) is significantly smaller than all the previous ARPES measurements. Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.
113 - L. Chen , T. T. Han , C. Cai 2021
Pairing symmetry which characterizes the superconducting pairing mechanism is normally determined by measuring the superconducting gap structure ($|Delta_k|$). Here, we report the measurement of a strain-induced gap modulation ($partial|Delta_k|$) in uniaxially strained Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ utilizing angle-resolved photoemission spectroscopy and $in$-$situ$ strain-tuning. We found that the uniaxial strain drives Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ into a nematic superconducting state which breaks the four-fold rotational symmetry of the superconducting pairing. The superconducting gap increases on the $d_{yz}$ electron and hole pockets while it decreases on the $d_{xz}$ counterparts. Such orbital selectivity indicates that orbital-selective pairing exists intrinsically in non-nematic iron-based superconductors. The $d_{xz}$ and $d_{yz}$ pairing channels are balanced originally in the pristine superconducting state, but become imbalanced under uniaxial strain. Our results highlight the important role of intra-orbital scattering in mediating the superconducting pairing in iron-based superconductors. It also highlights the measurement of $partial|Delta_k|$ as an effective way to characterize the superconducting pairing from a perturbation perspective.
174 - Y.-M. Xu , Y.-B. Huang , X.-Y. Cui 2010
The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional cite{3D_SC} (3D) electronic structure of these high-temperature superconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the KZ-capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on BKFAOP samples. We found a marked KZ dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer $Delta_1$ and interlayer $Delta_2$ pairing. The anisotropy ratio $Delta_2/Delta_1$, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling $J_c/J_{ab}$ in the parent compound cite{NeutronParent}. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrain the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations.
We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe$_{0.6}$Se$_{0.4}$ ($T_c=14$ K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector $Q=(0.5,0.5)$, $chi^{primeprime}(Q,omega)$, has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing $hbaromega$ for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above $T_c$, the energy of the mode is weakly temperature dependent and vanishes concurrently above $T_c$. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe$_{2-x}$(Co,Ni)$_x$As$_2$, the mode in FeTe$_{0.6}$Se$_{0.4}$ is not directly associated with the superconducting electronic gap.
We generalize the Chebyshev-Bogoliubov-deGennes method to treat multi-band systems to address the temperature dependence of the superconducting (SC) gaps of iron based superconductors. Four SC gaps associated with different electron and hole pockets of optimally doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ were clearly identified by angle resolved photo-emission spectroscopy. The few approaches that reproduces with success this gap structure are based on strong-coupling theories and required many adjustable parameters. We show that an approach with a redistribution of electron population between the hole and electron pockets $ u$ with evolving temperature reproduces the different coupling ratios $2Delta^{ u}(0)/k_{rm B} T_c$ in these materials. We define the values that fit the four zero temperature gaps $Delta^{ u}(0)$ and after that all $Delta^{ u}(T)$ is obtained without any additional parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا