Do you want to publish a course? Click here

Temperature dependence of the resonance and low energy spin excitations in superconducting FeTe$_{0.6}$Se$_{0.4}$

112   0   0.0 ( 0 )
 Added by Leland Harriger
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe$_{0.6}$Se$_{0.4}$ ($T_c=14$ K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector $Q=(0.5,0.5)$, $chi^{primeprime}(Q,omega)$, has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing $hbaromega$ for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above $T_c$, the energy of the mode is weakly temperature dependent and vanishes concurrently above $T_c$. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe$_{2-x}$(Co,Ni)$_x$As$_2$, the mode in FeTe$_{0.6}$Se$_{0.4}$ is not directly associated with the superconducting electronic gap.



rate research

Read More

We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$) scattering geometry, consistent with twice of the superconducting gap energy (3 meV) revealed by ARPES on the hole-like Fermi pocket with $d_{xz}/d_{yz}$ character. We analyze the superconductivity induced phonon self-energy effects for the $B_{1g}$(Fe) phonon and estimate the electron-phonon coupling constant $lambda^Gamma approx 0.026$, which is insufficient to explain superconductivity with $T_c=14$K.
We investigated the superconducting and transport properties in FeTe$_{1-x}$Se$_{x}$ (0.1 $leq$ $x$ $leq$ 0.4) single crystals prepared by O$_2$-annealing. Sharp superconducting transition width observed in magnetization measurement and the small residual resistivity prove the high quality of the crystals. All the crystals manifest large, homogeneous, and isotropic critical current density emph{J}$_c$ with self-field value over 10$^5$ A/cm$^2$ at 2 K. The large and field-robust critical current densities prove that the superconductivity in FeTe$_{1-x}$Se$_{x}$ (0.1 $leq$ $x$ $leq$ 0.4) is in bulk nature. The values of anisotropy parameter close to $T_c$ for crystals with different Se doping levels all reside in the range of 2 - 3. Hall coefficients $R_H$ keeps positive and almost constant value at high temperatures, followed by a sudden decreases before reaching $T$$_c$, which indicates that the electron-type charge carriers become dominant at low temperatures. Furthermore, the characteristic temperature for the sudden decrease in $R_H$ gradually increases with Se doping.
Inelastic neutron scattering measurements have been performed on a superconducting single crystal FeTe$_{0.5}$Se$_{0.5}$ to examine the ${bf Q}$-dependent enhancement of the dynamical structure factor, $S({bf Q},E)$, from ${bf Q}$ = (0, 0) to ($pi$, $pi$), including ($pi$, 0) in the superconducting state. In most of iron-based superconductors, $S({bf Q},E)$ is enhanced at ${bf Q}$ = ($pi$, 0), where the magnetic resonance mode is commonly observed in the unfolded Brillouin zone. Constant-$E$ cuts of $S({bf Q},E)$ suggest that the enhancement is not uniform in the magnetic excitation, and limited around ${bf Q}$ = ($pi$, 0). This result is consistent with the theoretical simulation of the magnetic resonance mode due to the Bardeen$-$Cooper$-$Schrieffer coherence factor with the sign-reversing order parameter of s$_{pm}$ wave.
We present a study of the Seebeck and Nernst coefficients of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ extended up to 28 T. The large magnitude of the Seebeck coefficient in the optimally doped sample tracks a remarkably low normalized Fermi temperature, which, like other correlated superconductors, is only one order of magnitude larger than T$_c$. We combine our data with other experimentally measured coefficients of the system to extract a set of self-consistent parameters, which identify Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ as a low-density correlated superconductor barely in the clean limit. The system is subject to strong superconducting fluctuations with a sizeable vortex Nernst signal in a wide temperature window.
It has been clarified that bulk superconductivity in Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ can be induced by annealing in an appropriate atmosphere to remove the harmful effects of excess iron. In order to clarify the details of the annealing process, we studied the changes in the physical properties and reaction products of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ annealed in pnictogen (P, As, Sb) atmospheres. Crystals annealed in a pnictogen atmosphere show bulk superconductivity and the values of $T_{c}$ and $J_{c}$ are about $14~$K and 2-4 $times 10{^5}~$A/cm$^2$ ($2~$K, self-field), respectively. It is also found that the reaction rate increases with the increase in the saturated vapor pressure of the pnictogen. Unexpectedly, the reaction products of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ after annealing in a P atmosphere mainly consist of FeTe$_2$. In addition, the amount of P required to obtain the optimal $T_{c}$ is much smaller than the amount of excess iron, which is similar to the case of oxygen annealing. P, oxygen, and to some extent As could serve as catalysts to form FeTe$_2$ to remove excess iron.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا