No Arabic abstract
We construct the general free energy governing long-wavelength magnetism in two-dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations. The general conclusions are vetted by a microscopic derivation for a simple model with Rashba spin-orbit coupling.
The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remarkably difficult to realize perpendicular exchange bias in thin-film structures. Here we demonstrate a strong perpendicular exchange bias effect in heterostructures of the quasi-two-dimensional canted antiferromagnet La$_2$CuO$_4$ and ferromagnetic (La,Sr)MnO$_3$ synthesized by ozone-assisted molecular beam epitaxy. The magnitude of this effect can be controlled via the doping level of the cuprate layers. Canted antiferromagnetism of layered oxides is thus a new and potentially powerful source of uniaxial anisotropy in magnetic devices.
We study realizations of spirals and skyrmions in two-dimensional antiferromagnets with a triangular lattice on an inversion-symmetry-breaking substrate. As a possible material realization, we investigate the adsorption of transition-metal atoms (Cr, Mn, Fe, or Co) on a monolayer of MoS$_2$, WS$_2$, or WSe$_2$ and obtain the exchange, anisotropy, and Dzyaloshinskii-Moriya interaction parameters using first-principles calculations. Using energy minimization and parallel-tempering Monte-Carlo simulations, we determine the magnetic phase diagrams for a wide range of interaction parameters. We find that skyrmion lattices can appear even with weak Dzyaloshinskii-Moriya interactions, but their stability is hindered by magnetic anisotropy. However, a weak easy plane magnetic anisotropy can be beneficial for stabilizing the skyrmion phase. Our results suggest that Cr$/$MoS$_2$, Fe$/$MoS$_2$, and Fe$/$WSe$_2$ interfaces can host spin spirals formed from the 120$^{circ}$ antiferromagnetic states. Our results further suggests that for other interfaces, such as Fe$/$MoS$_2$, the Dzyaloshinskii-Moriya interaction is strong enough to drive the system into a three-sublattice skyrmion lattice in the presence of experimentally feasible external magnetic field.
The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter such as skyrmions and a non-Fermi liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from $langle 111 rangle$ to $langle100rangle$ at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part of the phase diagram where a topological Hall effect and a non-Fermi liquid behavior have been reported. These unexpected results shed light on the puzzling behavior of MnSi at high pressures and the mechanisms that destabilize the helimagnetic long-range order at the critical pressure.
Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is needed, not needed, and where it is actually not sufficient. By means of an example, SrVO$_3$/SrTiO$_3$, we discuss step-by-step and figure-by-figure a density functional theory(DFT)+DMFT calculation. The second part reviews DFT+DMFT calculations for oxide heterostructure focusing on titanates, nickelates, vanadates, and ruthenates.
Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial properties, and led to suggestions for novel applications. However, in 3D the skyrmion crystal phase is observed only in a narrow region of the temperature-field phase diagram. We show here, using a general analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D) systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange, the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of magnetic fields down to T=0.