Do you want to publish a course? Click here

Enhanced Stability of Skyrmions in Two-Dimensional Chiral Magnets with Rashba Spin-Orbit Coupling

147   0   0.0 ( 0 )
 Added by Sumilan Banerjee Dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial properties, and led to suggestions for novel applications. However, in 3D the skyrmion crystal phase is observed only in a narrow region of the temperature-field phase diagram. We show here, using a general analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D) systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange, the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of magnetic fields down to T=0.



rate research

Read More

Skyrmions are topological spin textures of interest for fundamental science and applications. Previous theoretical studies have focused on systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. We investigate here systems that break surface inversion symmetry, in addition to possible broken bulk inversion. This leads to two distinct Dzyaloshinskii-Moriya (DM) terms with strengths $D_perp$, arising from Rashba spin-orbit coupling (SOC), and $D_parallel$ from Dresselhaus SOC. We show that skyrmions become progressively more stable with increasing $D_perp/D_parallel$, extending into the regime of easy-plane anisotropy. We find that the spin texture and topological charge density of skyrmions develops nontrivial spatial structure, with quantized topological charge in a unit cell given by a Chern number. Our results give a design principle for tuning Rashba SOC and magnetic anisotropy to stabilize skyrmions in thin films, surfaces, interfaces and bulk magnetic materials that break mirror symmetry.
The Bose-Einstein condensation (BEC) of the two-dimensional (2D) magnetoexciton-polaritons in microcavity, when the Landau quantization of the electron and hole states accompanied by the Rashba spin-orbit coupling plays the main role, were investigated. The Landau quantization levels of the 2D heavy holes with nonparabolic dispersion law and third order chirality terms both induced by the external electric field perpendicular to the semiconductor quantum well as the strong magnetic field B gives rise to the nonmonotous dependence on B of the magnetoexciton energy levels and of the polariton energy branches. The Hamiltonian describing the Coulomb electron - electron and the electron - radiation interactions was expressed in terms of the two-particle integral operators such as the density operators $hat{rho}(vec{Q})$ and $hat{D}(vec{Q})$ representing the optical and the acoustical plasmons and the magnetoexciton creation and annihilation operators $Psi_{ex}^{dagger}({{vec{k}}_{||}}),Psi_{ex}^{{}}({{vec{k}}_{||}})$ with in - plane wave vectors ${{vec{k}}_{||}}$ and $vec{Q}$. The polariton creation and annihilation operators $L_{ex}^{dagger}({{vec{k}}_{||}}),L_{ex}^{{}}({{vec{k}}_{||}})$ were introduced using the Hopfield coefficients and neglecting the antiresonant terms because the photon energies exceed the energy of the cavity mode. The BEC of the magnetoexciton - polariton takes place on the lower polariton branch in the point ${{vec{k}}_{||}}=0$ with the quantized value of the longitudinal component of the light wave vector, as in the point of the cavity mode.
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the magnetism and spin-orbit coupling at LaMnO3/SrIrO3 (3d-5d oxide) interfaces by tuning the LaMnO3 growth conditions which controls the lattice displacement and spin-correlated interfacial coupling through charge transfer. We report on a tunable and enhanced interface-induced Rashba spin-orbit coupling and Elliot-Yafet spin relaxation mechanism in LaMnO3/SrIrO3 bilayer with change in the underlying magnetic order of LaMnO3. We also observed enhanced spin-orbit coupling strength in LaMnO3/SrIrO3 compared to previously reported SrIrO3 layers. The X-Ray spectroscopy measurement reveals the quantitative valence of Mn and their impact on charge transfer. Further, we performed angle-dependent magnetoresistance measurements, which show signatures of magnetic proximity effect in SrIrO3 while reflecting the magnetic order of LaMnO3. Our work thus demonstrates a new route to engineer the interface induced Rashba spin-orbit coupling and magnetic proximity effect in 3d-5d oxide interfaces which makes SrIrO3 an ideal candidate for spintronics applications.
We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problem in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling.
In this work we study interacting electrons on square lattice in the presence of strong Rashba spin-orbit interaction. The spin-orbit term forces the time-reversal electron states to be paired in even Cooper channels. For concreteness, we only consider the repulsive onsite Hubbard and nearest-neighbor coulomb interactions, the so called extended Hubbard model. To examine the superconducting instability we obtain the effective interaction between electrons within the random phase approximation and treat the pairing instabilities driven by charge and spin fluctuations and their combined effects. We mapped out the phase diagram of the model in terms of interactions and electron fillings, and found that while the $d_{xy}$ and $d_{x^2-y^2}$ symmetries are the most likely pairing symmetries driven by charge and spin fluctuations, respectively, the strong effect of both fluctuations yields higher angular momentum Cooper instability. The possibility of topological superconductivity and triplet pairing is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا