Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is applied to find the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the March of 2011 tsunami that caused a heavy damage of the Fukushima nuclear power plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of Cs-134 and Cs-137 concentrations collected in two R/V cruises in June and July 2011 in the large area of the Northwest Pacific. It is shown that Lagrangian simulation is useful to finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of simulation are supported by tracks of the surface drifters which were deployed in the area.
We present the results of in-situ measurements of $^{134}$Cs and $^{137}$Cs released from the Fukushima Nuclear Power Plant (FNPP) collected at surface and different depths in the western North Pacific in June and July 2012. It was found that 15 month after the incident concentrations of radiocesium in the Japan and Okhotsk seas were at background or slightly increased level, while they had increased values in the subarctic front area east of Japan. The highest concentrations of $^{134}$Cs and $^{137}$Cs up to 13.5 ${pm}$ 0.9 and 22.7 ${pm}$ 1.5 Bq m$^{-3}$ have been found to exceed ten times the background levels before the accident. Maximal content of radiocesium was observed within subsurface and intermediate water layers inside the cores of anticyclonic eddies (100 - 500 m). Even slightly increased content of radiocesium was found at some eddies at depth of 1000 m. It is expected that convergence and subduction of surface water inside eddies are main mechanisms of downward transport of radionuclides. In situ observations are compared with the results of simulated advection of these radioisotopes by the AVISO altimetric velocity field. Different Lagrangian diagnostics are used to reconstruct the history and origin of synthetic tracers imitating measured seawater samples collected in each of those eddies. The results of observations are consistent with the simulated results. It is shown that the tracers, simulating water samples with increased radioactivity to be measured in the cruise, really visited the areas with presumably high level of contamination. Fast water advection between anticyclonic eddies and convergence of surface water inside eddies make them responsible for spreading, accumulation and downward transport of cesium rich water to the intermediate depth in the frontal zone.
We use dynamical systems approach and Lagrangian tools to study surface transport and mixing of water masses in a selected coastal region of the Japan Sea with moving mesoscale eddies associated with the Primorskoye Current. Lagrangian trajectories are computed for a large number of particles in an interpolated velocity field generated by a numerical regional multi-layer eddy-resolving circulation model. We compute finite-time Lyapunov exponents for a comparatively long period of time by the method developed and plot the Lyapunov synoptic map quantifying surface transport and mixing in that region. This map uncovers the striking flow structures along the coast with a mesoscale eddy street and repelling material lines. We propose new Lagrangian diagnostic tools --- the time of exit of particles off a selected box, the number of changes of the sign of zonal and meridional velocities --- to study transport and mixing by a pair of strongly interacting eddies often visible at sea-surface temperature satellite images in that region. We develop a technique to track evolution of clusters of particles, streaklines and material lines. The Lagrangian tools used allow us to reveal mesoscale eddies and their structure, to track different phases of the coastal flow, to find inhomogeneous character of transport and mixing on mesoscales and submesoscales and to quantify mixing by the values of exit times and the number of times particles wind around the eddys center.
Using Lagrangian methods we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the $174^circ$ E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter - spring is responsible for eddy generation in the region.
Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic advection in fluids, an analogue of dynamical Hamiltonian chaos in mechanics. The starting point for analysis is a velocity field obtained by this or that way. Being motivated by successful applications of that approach to simplified analytic models of geophysical fluid flows, researchers now work with satellite-derived velocity fields and outputs of sophisticated numerical models of ocean circulation. This review article gives an introduction to some of the basic concepts and methods used to study chaotic mixing and transport in the ocean and a brief overview of recent results with some practical applications of Lagrangian tools to monitor spreading of Fukushima-derived radionuclides in the ocean.
Coastal tidal estuaries are vital to the exchange of energy and material between inland waters and the open ocean. Debris originating from the land and ocean enter this environment and are transported by currents (river outflow and tide), wind, waves and density gradients. Understanding and predicting the source and fate of such debris has considerable environmental, economic and visual importance. We show that this issue can be addressed using the Lagrangian coherent structures (LCS) technique which is highly robust to hydrodynamic model uncertainties. Here we present a comprehensive study showing the utility of this approach to describe the fate of floating material in a coastal tidal embayment. An example is given from Moreton Bay, a semi-enclosed subtropical embayment with high morphologic, ecological and economic significance to Southeast Queensland, Australia. Transport barriers visualised by the LCS create pathways and barriers for material transport in the embayment. It was found that the wind field modified both the rate attraction and location of the transport barriers. One of the key outcomes is the demonstration of the significant role of islands in partitioning the transport of material and mixing within the embayment. The distribution of the debris sources along the shoreline are explained by the relative location of the LCS to the shoreline. Therefore, extraction of LCS can help to predict sources and fate of anthropogenic marine debris and thus, serve as a useful way for effective management of vulnerable regions and marine protected areas.
S.V. Prants
,M.V. Budyansky
,M.Yu. Uleysky
.
(2013)
.
"Lagrangian study of surface transport in the Kuroshio Extension area based on simulation of propagation of Fukushima-derived radionuclides"
.
Michael Uleysky
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا