Do you want to publish a course? Click here

Accurate expansions of internal energy and specific heat of critical two-dimensional Ising model with free boundaries

92   0   0.0 ( 0 )
 Added by Wenan Guo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bond-propagation (BP) algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on the square lattice and triangular lattice with free boundaries. Comparing with previous works [X.-T. Wu {it et al} Phys. Rev. E {bf 86}, 041149 (2012) and Phys. Rev. E {bf 87}, 022124 (2013)], we reach much higher accuracy ($10^{-26}$) of the internal energy and specific heat, compared to the accuracy $10^{-11}$ of the internal energy and $10^{-9}$ of the specific heat reached in the previous works. This leads to much more accurate estimations of the edge and corner terms. The exact values of some edge and corner terms are therefore conjectured. The accurate forms of finite-size scaling for the internal energy and specific heat are determined for the rectangle-shaped square lattice with various aspect ratios and various shaped triangular lattice. For the rectangle-shaped square and triangular lattices and the triangle-shaped triangular lattice, there is no logarithmic correction terms of order higher than 1/S, with S the area of the system. For the triangular lattice in rhombus, trapezoid and hexagonal shapes, there exist logarithmic correction terms of order higher than 1/S for the internal energy, and logarithmic correction terms of all orders for the specific heat.



rate research

Read More

In this paper, we use the dimer method to obtain the free energy of Ising models consisting of repeated horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N$ arbitrary, to investigate the effects of connectivity and proximity on the specific heat. The decoration method is used to transform the strings of $n+1$ spins interacting with their nearest neighbors with coupling $J$ into a pair with coupling $bar J$ between the two spins. The free energy per site is given as a single integral and some results for critical temperatures are derived.
201 - W. Selke , L.N. Shchur 2009
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next--nearest neighbors, along only one diagonal, is determined using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin--spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization group calculations.
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $Ltimes M$ square lattice, wrapped around a torus with aspect ratio $rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $rhoto 0$. Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.
122 - F. A. Bagamery 2005
We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criterion. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent, u=2.005(5), corresponds to that expected in a system with isotropic correlated long-range disorder, whereas the scaling dimension of the magnetization density, x_m=0.1294(7), is somewhat larger than in the pure system. Conformal properties of the magnetization and energy density profiles are also examined numerically.
We discuss the non-self-averaging phenomena in the critical point of weakly disordered Ising ferromagnet. In terms of the renormalized replica Ginzburg-Landau Hamiltonian in dimensions D <4, we derive an explicit expression for the probability distribution function (PDF) of the critical free energy fluctuations. In particular, using known fixed-point values for the renormalized coupling parameters, we obtain the universal curve for such PDF in the dimension D=3. It is demonstrated that this function is strongly asymmetric: its left tail is much slower than the right one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا