Do you want to publish a course? Click here

The signature of the central engine in the weakest relativistic explosions: GRB100316D

117   0   0.0 ( 0 )
 Added by Raffaella Margutti
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present late-time radio and X-ray observations of the nearby sub-energetic Gamma-Ray Burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ~10^49 erg is coupled to mildly-relativistic (Gamma=1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with rate Mdot ~10^-5 Msun yr^-1 (for wind velocity v_w = 1000 km s^-1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB100316D as one of the weakest central-engine driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation which dominates over the standard afterglow at late times (t>10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.



rate research

Read More

Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, RATIR, Maidanak, ISON, NOT, LT and GTC. This burst shows a steep drop in the X-ray light-curve at $simeq 10^5$ s after the trigger, with a power-law decay index of $alpha sim 6$. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at $10^5$ s, must be of internal origin, produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for $simeq 1$ day in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after $simeq 10^5$ s can be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta, and compare it with the energy of the associated supernova, SN 2013fu.
The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity timescale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout timescale on the engine luminosity and the effects of the detectors flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black-hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model.
In the past few years the number of well-sampled optical to NIR light curves of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to simultaneous multi-band imagers such as GROND. Combining these densely sampled ground-based data sets with the Swift UVOT and XRT space observations unveils a much more complex afterglow evolution than what was predicted by the most commonly invoked theoretical models. GRB 100814A represents a remarkable example of these interesting well-sampled events, showing a prominent late-time rebrightening in the optical to NIR bands and a complex spectral evolution. This represents a unique laboratory to test the different afterglow emission models. Here we study the nature of the complex afterglow emission of GRB 100814A in the framework of different theoretical models. Moreover, we compare the late-time chromatic rebrightening with those observed in other well-sampled long GRBs. We analysed the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m MPG/ESO telescope together with the X-ray and UV data detected by the instruments onboard the Swift observatory. The broad-band afterglow evolution, achieved by constructing multi-instrument light curves and spectral energy distributions, will be discussed in the framework of different theoretical models. We find that the standard models that describe the broad-band afterglow emission within the external shock scenario fail to describe the complex evolution of GRB 100814A, and therefore more complex scenarios must be invoked. [abridged]
103 - Tamar Faran , Reem Sari 2020
The hydrodynamics of an ultrarelativistic flow, enclosed by a strong shock wave, are described by the well known Blandford-McKee solutions in spherical geometry. These solutions, however, become inaccurate at a distance $sim R/2$ behind the shock wave, where $R$ is the shock radius, as the flow approaches Newtonian velocities. In this work we find a new self-similar solution which is an extension to the Blandford-McKee solutions, and which describes the interior part of the blast wave, where the flow reaches mildly relativistic to Newtonian velocities. We find that the velocity profile of the internal part of the flow does not depend on the value of the shock Lorentz factor, $Gamma$, and is accurate from $r=0$ down to a distance of $R/Gamma^2$ behind the shock. Despite the fact that the shock wave is in causal contact with the entire flow behind it, a singular point appears in the equations. Nevertheless, the solution is not required to pass through the singular point: for ambient density that decreases slowly enough, $rho propto r^{-k}$ with $k<frac{1}{2}(5-sqrt{10})cong0.92$, a secondary shock wave forms with an inflow towards the origin.
The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا