No Arabic abstract
We introduce and compare two approaches to equivariant homotopy theory in a topological or ordinary Quillen model category. For the topological model category of spaces, we generalize Piacenzas result that the categories of topological presheaves indexed by the orbit category of a fixed topological group $G$ and the category of $G$-spaces can be endowed with Quillen equivalent model category structures. We prove an analogous result for any cofibrantly generated model category and discrete group $G$, under certain conditions on the fixed point functors of the subgroups of $G$. These conditions hold in many examples, though not in the category of chain complexes, where we nevertheless establish and generalize to collections an equivariant Whitehead Theorem `{a} la Kropholler and Wall for the normalized chain complexes of simplicial $G$-sets.
We investigate certain adjunctions in derived categories of equivariant spectra, including a right adjoint to fixed points, a right adjoint to pullback by an isometry of universes, and a chain of two right adjoints to geometric fixed points. This leads to a variety of interesting other adjunctions, including a chain of 6 (sometimes 7) adjoints involving the restriction functor to a subgroup of a finite group on equivariant spectra indexed over the trivial universe.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Diecks splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed point functors and the motivic Adams isomorphism.
For a finite group G, we introduce the complete suboperad $Q_G$ of the categorical G-Barratt-Eccles operad $P_G$. We prove that $P_G$ is not finitely generated, but $Q_G$ is finitely generated and is a genuine $E_infty$ G-operad (i.e., it is $N_infty$ and includes all norms). For G cyclic of order 2 or 3, we determine presentations of the object operad of $Q_G$ and conclude with a discussion of algebras over $Q_G$, which we call biased permutative equivariant categories.
We introduce a notion of freeness for $RO$-graded equivariant generalized homology theories, considering spaces or spectra $E$ such that the $R$-homology of $E$ splits as a wedge of the $R$-homology of induced virtual representation spheres. The full subcategory of these spectra is closed under all of the basic equivariant operations, and this greatly simplifies computation. Many examples of spectra and homology theories are included along the way. We refine this to a collection of spectra analogous to the pure and isotropic spectra considered by Hill--Hopkins--Ravenel. For these spectra, the $RO$-graded Bredon homology is extremely easy to compute, and if these spaces have additional structure, then this can also be easily determined. In particular, the homology of a space with this property naturally has the structure of a co-Tambara functor (and compatibly with any additional product structure). We work this out in the example of $BU_{mathbb R}$ and coinduce