Do you want to publish a course? Click here

The tom Dieck splitting theorem in equivariant motivic homotopy theory

100   0   0.0 ( 0 )
 Added by Jeremiah Heller
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Diecks splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed point functors and the motivic Adams isomorphism.



rate research

Read More

195 - Mark Behrens , Jay Shah 2019
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.
97 - Marc Hoyois 2015
We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic homotopy theory: the (unstable) purity and gluing theorems of Morel and Voevodsky and the (stable) ambidexterity theorem of Ayoub. Our proof of the latter is different than Ayoubs and is of interest even when G is trivial. Using these results, we construct a formalism of six operations for equivariant motivic spectra, and we deduce that any cohomology theory for G-schemes that is represented by an absolute motivic spectrum satisfies descent for the cdh topology.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt K-theory. We also comment on the tensor triangular geometry of compact cellular motivic spectra, producing in particular novel field spectra in this category. We conclude with a list of questions about the structure of the tensor triangular spectrum of the stable motivic homotopy category.
196 - J. Heller , K. Ormsby 2014
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا