We suggest a new representation of Maslovs canonical operator in a neighborhood of the caustics using a special class of coordinate systems (eikonal coordinates) on Lagrangian manifolds. The specific features of the two-dimensional case are considered. The general case is treated in arXiv:1307.2292 [math-ph].
We suggest a new representation of Maslovs canonical operator in a neighborhood of the caustics using a special class of coordinate systems (eikonal coordinates) on Lagrangian manifolds.
The Theory of (2+1) Systems based on 2D Schrodinger Operator was started by S.Manakov, B.Dubrovin, I.Krichever and S.Novikov in 1976. The Analog of Lax Pairs introduced by Manakov, has a form $L_t=[L,H]-fL$ (The $L,H,f$-triples) where $L=partial_xpartial_y+Gpartial_y+S$ and $H,f$-some linear PDEs. Their Algebro-Geometric Solutions and therefore the full higher order hierarchies were constructed by B.Dubrovin, I.Krichever and S.Novikov. The Theory of 2D Inverse Spectral Problems for the Elliptic Operator $L$ with $x,y$ replaced by $z,bar{z}$, was started by B.Dubrovin, I.Krichever and S.Novikov: The Inverse Spectral Problem Data are taken from the complex Fermi-Curve consisting of all Bloch-Floquet Eigenfunctions $Lpsi=const$. Many interesting systems were found later. However, specific properties of the very first system, offered by Manakov for the verification of new method only, were not studied more than 10 years until B.Konopelchenko found in 1988 analogs of Backund Transformations for it. He pointed out on the Burgers-Type Reduction. Indeed, the present authors quite recently found very interesting extensions, reductions and applications of that system both in the theory of nonlinear evolution systems (The Self-Adjoint and 2D Burgers Hierarhies were invented, and corresponding reductions of Inverse Problem Data found) and in the Spectral Theory of Important Physical Operators (The Purely Magnetic 2D Pauli Operators). We call this system GKMMN by the names of authors who studied it.
We consider the radial wave equation in similarity coordinates within the semigroup formalism. It is known that the generator of the semigroup exhibits a continuum of eigenvalues and embedded in this continuum there exists a discrete set of eigenvalues with analytic eigenfunctions. Our results show that, for sufficiently regular data, the long time behaviour of the solution is governed by the analytic eigenfunctions. The same techniques are applied to the linear stability problem for the fundamental self--similar solution $chi_T$ of the wave equation with a focusing power nonlinearity. Analogous to the free wave equation, we show that the long time behaviour (in similarity coordinates) of linear perturbations around $chi_T$ is governed by analytic mode solutions. In particular, this yields a rigorous proof for the linear stability of $chi_T$ with the sharp decay rate for the perturbations.
This paper is devoted to the study of a semiclassical black box operator $P$. We estimate the norm of its resolvent truncated near the trapped set by the norm of its resolvent truncated on rings far away from the origin. For $z$ in the unphysical sheet with $- h |ln h| < Im z < 0$, we prove that this estimate holds with a constant $h |Im z|^{-1} e^{C|Im z|/h}$. We also obtain analogous bounds for the resonances states of $P$. These results hold without any assumption on the trapped set neither any assumption on the multiplicity of the resonances.
In this paper we continue the formal analysis of the long-time asymptotics of the homoenergetic solutions for the Boltzmann equation that we began in [18]. They have the form $fleft( x,v,tright) =gleft(v-Lleft( tright) x,tright) $ where $Lleft( tright) =Aleft(I+tAright) ^{-1}$ where $A$ is a constant matrix. Homoenergetic solutions satisfy an integro-differential equation which contains, in addition to the classical Boltzmann collision operator, a linear hyperbolic term. Depending on the properties of the collision kernel the collision and the hyperbolic terms might be of the same order of magnitude as $ttoinfty$, or the collision term could be the dominant one for large times, or the hyperbolic term could be the largest. The first case has been rigorously studied in [17]. Formal asymptotic expansions in the second case have been obtained in [18]. All the solutions obtained in this case can be approximated by Maxwellian distributions with changing temperature. In this paper we focus in the case where the hyperbolic terms are much larger than the collision term for large times (hyperbolic-dominated behavior). In the hyperbolic-dominated case it does not seem to be possible to describe in a simple way all the long time asymptotics of the solutions, but we discuss several physical situations and formulate precise conjectures. We give explicit formulas for the relationship between density, temperature and entropy for these solutions. These formulas differ greatly from the ones at equilibrium.
S. Yu. Dobrokhotov
,G. Makrakis (3
.
(2013)
.
"New formulas for Maslovs canonical operator in a neighborhood of focal points and caustics in 2D semiclassical asymptotics"
.
Vladimir Nazaikinskii
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا