Do you want to publish a course? Click here

Cyclic Cosmology, Conformal Symmetry and the Metastability of the Higgs

312   0   0.0 ( 0 )
 Added by Itzhak Bars
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height 10^{10-12}{GeV})^{4}) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for big bang to end one cycle, bounce, and begin the next. In this paper, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.



rate research

Read More

130 - Shreya Banerjee 2016
We investigate the bounce and cyclicity realization in the framework of weakly broken galileon theories. We study bouncing and cyclic solutions at the background level, reconstructing the potential and the galileon functions that can give rise to a given scale factor, and presenting analytical expressions for the bounce requirements. We proceed to a detailed investigation of the perturbations, which after crossing the bouncing point give rise to various observables, such as the scalar and tensor spectral indices and the tensor-to-scalar ratio. Although the scenario at hand shares the disadvantage of all bouncing models, namely that it provides a large tensor-to-scalar ratio, introducing an additional light scalar significantly reduces it through the kinetic amplification of the isocurvature fluctuations.
246 - Yongsung Yoon 2013
We have found a mechanism which regulates the dark energy in our universe. With an emergent conformal symmetry, the dark energy density is regulated to the order of a conformal anomaly parameter in the conformally coupled gravity. In the late time cosmological evolution, we have obtained a set of exact cosmological equations which deviate from the Friedmann equations significantly. Based on the recent observational cosmic expansion data, it is shown that the dark energy density is about 1/4 of the matter density at present, which is quite smaller than determined by General Relativity. The jerk parameter at present is also determined as a definite value 0.47.
We study the bounce and cyclicity realization in the framework of new gravitational scalar-tensor theories. In these theories the Lagrangian contains the Ricci scalar and its first and second derivatives, in a specific combination that makes them free of ghosts, and transformed into the Einstein frame they are proved to be a subclass of bi-scalar extensions of general relativity. We present analytical expressions for the bounce requirements, and we examine the necessary qualitative behavior of the involved functions that can give rise to a given scale factor. Having in mind these qualitative forms, we reverse the procedure and we construct suitable simple Lagrangian functions that can give rise to a bounce or cyclic scale factor.
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to mimetic dark matter or to dark radiation respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviours reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
417 - Yongsung Yoon 2009
A cosmic potential which can relax the vacuum energy is proposed in a framework of scalar-tensor gravity. In the phase of the gravity scalar field around the evolution with an approximate emergent conformal symmetry, we have obtained a set of cosmological equations with the dark energy regulated to the order of a conformal anomaly parameter. Through a role of the cosmic potential, the vacuum energy which could be generated in matter Lagrangian does not contribute to the dark energy in the phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا