Do you want to publish a course? Click here

Improved Berezin-Li-Yau inequalities with magnetic field

50   0   0.0 ( 0 )
 Added by Hynek Kovarik
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study the eigenvalue sums of Dirichlet Laplacians on bounded domains. Among our results we establish an improvement of the Li-Yau bound in the presence of a constant magnetic field.

rate research

Read More

52 - Timo Weidl 2007
We give an improvement of sharp Berezin type bounds on the Riesz means $sum_k(Lambda-lambda_k)_+^sigma$ of the eigenvalues $lambda_k$ of the Dirichlet Laplacian in a domain if $sigmageq 3/2$. It contains a correction term of the order of the standard second term in the Weyl asymptotics. The result is based on an application of sharp Lieb-Thirring inequalities with operator valued potential to spectral estimates of the Dirichlet Laplacian in domains.
We study the eigenvalues of the Dirichlet Laplace operator on an arbitrary bounded, open set in $R^d$, $d geq 2$. In particular, we derive upper bounds on Riesz means of order $sigma geq 3/2$, that improve the sharp Berezin inequality by a negative second term. This remainder term depends on geometric properties of the boundary of the set and reflects the correct order of growth in the semi-classical limit. Under certain geometric conditions these results imply new lower bounds on individual eigenvalues, which improve the Li-Yau inequality.
We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas.
We consider a Schrodinger operator on the half-line with a Dirichlet boundary condition at the origin and show that moments of its negative eigenvalues can be estimated by the part of the potential that is larger than the critical Hardy weight. The estimate is valid for the critical value of the moment parameter.
434 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that decays at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا