No Arabic abstract
We study the eigenvalues of the Dirichlet Laplace operator on an arbitrary bounded, open set in $R^d$, $d geq 2$. In particular, we derive upper bounds on Riesz means of order $sigma geq 3/2$, that improve the sharp Berezin inequality by a negative second term. This remainder term depends on geometric properties of the boundary of the set and reflects the correct order of growth in the semi-classical limit. Under certain geometric conditions these results imply new lower bounds on individual eigenvalues, which improve the Li-Yau inequality.
In this paper we study the eigenvalue sums of Dirichlet Laplacians on bounded domains. Among our results we establish an improvement of the Li-Yau bound in the presence of a constant magnetic field.
We give an improvement of sharp Berezin type bounds on the Riesz means $sum_k(Lambda-lambda_k)_+^sigma$ of the eigenvalues $lambda_k$ of the Dirichlet Laplacian in a domain if $sigmageq 3/2$. It contains a correction term of the order of the standard second term in the Weyl asymptotics. The result is based on an application of sharp Lieb-Thirring inequalities with operator valued potential to spectral estimates of the Dirichlet Laplacian in domains.
We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas.
This paper reviews many of the known inequalities for the eigenvalues of the Laplacian and bi-Laplacian on bounded domains in Euclidean space. In particular, we focus on isoperimetric inequalities for the low eigenvalues of the Dirichlet and Neumann Laplacians and of the vibrating clamped plate problem (i.e., the biharmonic operator with ``Dirichlet boundary conditions). We also discuss the known universal inequalities for the eigenvalues of the Dirichlet Laplacian and the vibrating clamped plate and buckling problems and go on to present some new ones. Some of the names associated with these inequalities are Rayleigh, Faber-Krahn, Szego-Weinberger, Payne-Polya-Weinberger, Sperner, Hile-Protter, and H. C. Yang. Occasionally, we will also comment on extensions of some of our inequalities to bounded domains in other spaces, specifically, S^n or H^n.
We find sharp conditions on the growth of a rooted regular metric tree such that the Neumann Laplacian on the tree satisfies a Hardy inequality. In particular, we consider homogeneous metric trees. Moreover, we show that a non-trivial Aharonov-Bohm magnetic field leads to a Hardy inequality on a loop graph.