Do you want to publish a course? Click here

Loss in hybrid qubit-bus couplings and gates

123   0   0.0 ( 0 )
 Added by Sebastien Louis Mr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a characterization and analysis of the effects of dissipation on oscillator assisted (qubus) quantum gates. The effects can be understood and minimized by looking at the dynamics of the signal coherence and its entanglement with the continuous variable probe. Adding loss in between successive interactions we obtain the effective quantum operations, providing a novel approach to loss analysis in such hybrid settings. We find that in the presence of moderate dissipation the gate can operate with a high fidelity. We also show how a simple iteration scheme leads to independent single qubit dephasing, while retaining the conditional phase operation regardless of the amount of loss incurred by the probe.



rate research

Read More

In multi-qubit system, correlated errors subject to unwanted interactions with other qubits is one of the major obstacles for scaling up quantum computers to be applicable. We present two approaches to correct such noise and demonstrate with high fidelity and robustness. We use spectator and intruder to discriminate the environment interacting with target qubit in different parameter regime. Our proposed approaches combines analytical theory and numerical optimization, and are general to obtain smooth control pulses for various qubit systems. Both theory and numerical simulations demonstrate to correct these errors efficiently. Gate fidelities are generally above $0.9999$ over a large range of parameter variation for a set of single-qubit gates and two-qubit entangling gates. Comparison with well-known control waveform demonstrates the great advantage of our solutions.
Mitigating crosstalk errors, whether classical or quantum mechanical, is critically important for achieving high-fidelity entangling gates in multi-qubit circuits. For weakly anharmonic superconducting qubits, unwanted $ZZ$ interactions can be suppressed by combining qubits with opposite anharmonicity. We present experimental measurements and theoretical modeling of two-qubit gate error for gates based on the cross resonance interaction between a capacitively shunted flux qubit and a transmon and demonstrate the elimination of the $ZZ$ interaction.
We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum gates are performed solely by shifting the resonance frequencies of the resonators on a ns timescale. An additional cavity containing a Cooper-pair box is exploited as an auxiliary degree of freedom to implement two-qubit gates. The generality of the scheme allows its potential implementation with a wide class of spin systems.
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates, which entangle three or more qubits in a single step. Here, we show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits where at least one qubit is involved in two or more of the two-qubit gates. Multi-qubit gates implemented in this way are as fast as, or sometimes even faster than, the constituent two-qubit gates. Furthermore, these multi-qubit gates do not require any modification of the quantum processor, but are ready to be used in current quantum-computing platforms. We demonstrate this idea for two specific cases: simultaneous controlled-Z gates and simultaneous iSWAP gates. We show how the resulting multi-qubit gates relate to other well-known multi-qubit gates and demonstrate through numerical simulations that they would work well in available quantum hardware, reaching gate fidelities well above 99 %. We also present schemes for using these simultaneous two-qubit gates to swiftly create large entangled states like Dicke and Greenberg-Horne-Zeilinger states.
We propose and demonstrate a quantum control scheme for hybrid quantum registers that can reduce the operation time, and therefore the effects of relaxation, compared to existing implementations. It combines resonant excitation pulses with periods of free precession under the internal Hamiltonian of the qubit system. We use this scheme to implement quantum gates like controlled-NOT operations on electronic and nuclear spins of the nitrogen-vacancy center in diamond. As a specific application, we transfer population between electronic and nuclear spin qubits and use it to measure the Rabi oscillations of a nuclear spin in a system with multiple coupled spins.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا