Do you want to publish a course? Click here

Damped-Driven Granular Crystals: An Ideal Playground for Dark Breathers and Multibreathers

197   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wide range of parameter values and initial conditions. Importantly, the number of ensuing breathers within the multibreather pattern produced can be dialed in by varying the frequency or amplitude of the actuation. The values of the frequency (resp. amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather solutions. The existence, linear stability, and bifurcation structure of the theoretical dark breathers are also studied in detail. Moreover, the distributed sensing technologies developed herein enable a detailed space-time probing of the system and a systematic favorable comparison between theory, computation and experiments.



rate research

Read More

The study of granular crystals, metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals, a type of nonlinear metamaterial, exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures --- which include traveling solitary waves, dispersive shock waves, and discrete breathers --- have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.
We report an exact link between Zakharov-Gelash super-regular (SR) breathers (formed by a pair of quasi-Akhmediev breathers) with interesting different nonlinear propagation characteristics and modulation instability (MI). This shows that the absolute difference of group velocities of SR breathers coincides exactly with the linear MI growth rate. This link holds for a series of nonlinear Schr{o}dinger equations with infinite-order terms. For the particular case of SR breathers with opposite group velocities, the growth rate of SR breathers is consistent with that of each quasi-Akhmediev breather along the propagation direction. Numerical simulations reveal the robustness of different SR breathers generated from various non-ideal single and multiple initial excitations. Our results provide insight into the MI nature described by SR breathers and could be helpful for controllable SR breather excitations in related nonlinear systems.
We investigate nonlinear localized modes at light-mass impurities in a one-dimensional, strongly-compressed chain of beads under Hertzian contacts. Focusing on the case of one or two such defects, we analyze the problems linear limit to identify the system eigenfrequencies and the linear defect modes. We then examine the bifurcation of nonlinear defect modes from their linear counterparts and study their linear stability in detail. We identify intriguing differences between the case of impurities in contact and ones that are not in contact. We find that the former bears similarities to the single defect case, whereas the latter features symmetry-breaking bifurcations with interesting static and dynamic implications.
We report structure formation in submonolayers of magnetic microparticles subjected to periodic electrostatic and magnetic excitations. Depending on the excitation parameters, we observe the formation of a rich variety of structures: clusters, rings, chains, and networks. The growth dynamics and shapes of the structures are strongly dependent on the amplitude and frequency of the external magnetic field. We find that for pure ac magnetic driving at low densities of particles, the low-frequency magnetic excitation favors clusters while high frequency excitation favors chains and net-like structures. An abrupt phase transition from chains to a network phase was observed for a high density of particles.
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multi-modal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the Nonlinear Schrodinger (NLS) equation predicts the corresponding modes fairly well. We propose that nonlinear multi-modal systems can be useful in vibration energy harvest- ing and discuss a prototypical framework for its realization. The electromechanical model we derive predicts accurately the conversion from mechanical to electrical energy observed in the experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا