Do you want to publish a course? Click here

The location and impact of jet-driven outflows of cold gas: the case of 3C293

143   0   0.0 ( 0 )
 Added by Elizabeth Mahony
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nearby radio galaxy 3C293 is one of a small group of objects where extreme outflows of neutral hydrogen have been detected. However, due to the limited spatial resolution of previous observations, the exact location of the outflow was not able to be determined. In this letter, we present new higher resolution VLA observations of the central regions of this radio source and detect a fast outflow of HI with a FWZI velocity of Delta v~1200 km/s associated with the inner radio jet, approximately 0.5 kpc west of the central core. We investigate possible mechanisms which could produce the observed HI outflow and conclude that it is driven by the radio-jet. However, this outflow of neutral hydrogen is located on the opposite side of the nucleus to the outflow of ionised gas previously detected in this object. We calculate a mass outflow rate in the range of 8-50 solar masses/yr corresponding to a kinetic energy power injected back into the ISM of 1.38x10^{42} - 1.00x10^{43} erg/s or 0.01 - 0.08 percent of the Eddington luminosity. This places it just outside the range required by some galaxy evolution simulations for negative feedback from the AGN to be effective in halting star-formation within the galaxy.



rate research

Read More

Fast outflows of gas, driven by the interaction between the radio-jets and ISM of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C293. In this paper we present Integral Field Unit (IFU) observations taken with OASIS on the William Herschel Telescope (WHT), enabling us to map the spatial extent of the ionised gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C293 is detected along the inner radio lobes with a mass outflow rate ranging from $sim 0.05-0.17$ solar masses/yr (in ionised gas) and corresponding kinetic power of $sim 0.5-3.5times 10^{40}$ erg/s. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find line-widths broader than $300$ km/s up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet line-widths $>400$ km/s are detected out to 7 kpc from the nucleus and line-widths of $>500$ km/s at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.
Observations of ionized and neutral gas outflows in radio-galaxies (RGs) suggest that AGN radio jet feedback has a galaxy-scale impact on the host ISM, but it is still unclear how the molecular gas is affected. We present deep Spitzer IRS spectroscopy of 8 RGs that show fast HI outflows. All of these HI-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV or X-ray heating. This suggests that the radio jet, which drives the HI outflow, is also responsible for the shock-excitation of the warm H2 gas. In addition, the warm H2 gas does not share the kinematics of the ionized/neutral gas. The mid-IR ionized gas lines are systematically broader than the H2 lines, which are resolved by the IRS (with FWHM up to 900km/s) in 60% of the detected H2 lines. In 5 sources, the NeII line, and to a lesser extent the NeIII and NeV lines, exhibit blue-shifted wings (up to -900km/s with respect to the systemic velocity) that match the kinematics of the outflowing HI or ionized gas. The H2 lines do not show broad wings, except tentative detections in 3 sources. This shows that, contrary to the HI gas, the H2 gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the dynamical heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.
309 - N. Shafi 2009
Very deep neutral hydrogen (HI) observations of the edge-on spiral galaxy NGC 3079 with the Westerbork Synthesis Radio Telescope (WSRT) are presented. The galaxy has been studied extensively in different wavelengths and known for its several unique and complex features. However, the new data still revealed several new features and show that the galaxy is even more complicated and interesting than previously thought. In the new data a large stream of gas, encircling the entire galaxy, was discovered, while the data also show, for the first time, that not only hot gas is blown into space by the starburst/AGN, but also large amounts of cold gas, despite the high energies involved in the outflow.
We present an unprecedented view on the morphology and kinematics of the extended narrow-line region (ENLR) and molecular gas around the prototypical hyper-luminous quasar 3C273 ($Lsim10^{47}$ erg/s at z=0.158) based on VLT-MUSE optical 3D spectroscopy and ALMA observations. We find that: 1) The ENLR size of 12.1$pm$0.2kpc implies a smooth continuation of the size-luminosity relation out to large radii or a much larger break radius as previously proposed. 2) The kinematically disturbed ionized gas with line splits reaching 1000km/s out to 6.1$pm$1.5kpc is aligned along the jet axis. 3) The extreme line broadening on kpc scales is caused by spatial and spectral blending of many distinct gas clouds separated on sub-arcsecond scales with different line-of-sight velocities. The ENLR velocity field combined with the known jet orientation rule out a simple scenario of a radiatively-driven radial expansion of the outflow. Instead we propose that a pressurized expanding hot gas cocoon created by the radio jet is impacting on an inclined gas disk leading to transverse and/or backflow motion with respect to our line-of-sight. The molecular gas morphology may either be explained by a density wave at the front of the outflow expanding along the jet direction as predicted by positive feedback scenario or the cold gas may be trapped in a stellar over-density caused by a recent merger event. Using 3C273 as a template for observations of high-redshift hyper-luminous AGN reveals that large-scale ENLRs and kpc scale outflows may often be missed due to the brightness of the nuclei and the limited sensitivity of current near-IR instrumentation.
Newly born and young radio sources are in a delicate phase of their life. Their jets are fighting their way through the surrounding gaseous medium, strongly experiencing this interaction while, at the same time, impacting and affecting the interstellar medium (ISM). Here we present the results from two studies of HI (in absorption) and molecular gas illustrating what can be learned from these phases of the gas. We first describe a statistical study with the WSRT. The study shows that the young radio sources not only have an higher detection rate of HI, but also systematically broader and more asymmetric HI profiles, most of them blueshifted. This supports the idea that we are looking at young radio jets making their way through the surrounding ISM, which also appears to be, on average, richer in gas than in evolved radio sources. Signatures of the impact of the jet are seen in the kinematics of the gas. However, even among the young sources, we identify a population that remains undetected in HI even after stacking their profiles. Orientation effects can only partly explain the result. These objects either are genuinely gas-poor or have different conditions of the medium, e.g. higher spin temperature. We further present the ALMA study of molecular gas in IC5063 to trace in detail the jet impacting the ISM. The kinematics of the cold, molecular gas co-spatial with the radio plasma shows this process in action. The ALMA data reveal a fast outflow of molecular gas extending along the entire radio jet (~1 kpc), with the highest outflow velocities at the location of the brighter hot-spot. We propose a scenario where the radio jet is expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the ISM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا