Do you want to publish a course? Click here

KK MC 4.22: CEEX EW Corrections for fbar{f}rightarrow fbar{f} at LHC and Muon Colliders

93   0   0.0 ( 0 )
 Added by Bennie F. L. Ward
 Publication date 2013
  fields
and research's language is English
 Authors S. Jadach




Ask ChatGPT about the research

We present the upgrade of the coherent exclusive (CEEX) exponentiation realization of the Yennie-Frautschi-Suura (YFS) theory used in our Monte Carlo ({cal KK} MC) to the processes fbar{f}rightarrow fbar{f}, f=mu,tau,q, u_ell, f=e,mu,tau,q, u_ell, q=u,d,s,c,b,t, ell=e,mu,tau with f e f, with an eye toward the precision physics of the LHC and possible high energy muon colliders. We give a brief summary of the CEEX theory in comparison to the older (EEX) exclusive exponentiation theory and illustrate theoretical results relevant to the LHC and possible muon collider physics programs.



rate research

Read More

With an eye toward the precision physics of the LHC, FCC-ee and possible high energy muon colliders, we present the extension of the CEEX (coherent exclusive exponentiation) realization of the YFS approach to resummation in our KK MC to include the processes fbar{f}rightarrow fbar{f}, f=mu,tau, q, u_ell, f=e, mu,tau, q, u_ell, q=u,d,s,c,b,t, ell =e,mu,tau with f e f. After giving a brief summary of the CEEX theory with reference to the older EEX (exclusive exponentiation) theory, we illustrate theoretical results relevant to the LHC, FCC-ee, and possible muon collider physics programs.
174 - S. Jadach 2017
With an eye toward the precision physics of the LHC, such as the recent measurement of $M_W$ by the ATLAS Collaboration, we present here systematic studies relevant to the assessment of the expected size of multiple photon radiative effects in heavy gauge boson production with decay to charged lepton pairs. We use the new version 4.22 of ${cal KK}$MC-hh so that we have CEEX EW exact ${cal O}(alpha^2 L)$ corrections in a hadronic MC and control over the corresponding EW initial-final interference (IFI) effects as well. In this way, we illustrate the interplay between cuts of the type used in the measurement of $M_W$ at the LHC and the sizes of the expected responses of the attendant higher order corrections. We find that there are per cent to per mille level effects in the initial-state radiation, fractional per mille level effects in the IFI and per mille level effects in the over-all ${cal O}(alpha^2 L)$ corrections that any treatment of EW corrections at the per mille level should consider. Our results have direct applicability to current LHC experimental data analyses.
138 - B.F.L. Ward 2018
${cal KK}$MC-hh is a precision event-generator for Z production and decay in hadronic collisions, which applies amplitude-level resummation to both initial and final state photon radiation, including perturbative residuals exact through ${cal O}(alpha^2L)$, together with exact ${cal O}(alpha)$ EW matrix element corrections. We present some comparisons to other programs and results showing the effect of multi-photon radiation for cuts motivated by a recent ATLAS W mass analysis. We also show preliminary untuned comparisons of the electroweak corrections of ${cal KK}$MC-hh to those of HORACE, which includes exact ${cal O}(alpha)$ corrections with resummed final-state photon radiation.
50 - S. Jadach 2016
We present an improvement of the MC event generator Herwiri2, where we recall the latter MC was a prototype for the inclusion of CEEX resummed EW corrections in hadron-hadron scattering at high cms energies. In this improvement the new exact ${cal O}(alpha^2L)$ resummed EW generator ${cal{KK}}$ MC 4.22, featuring as it does the CEEX realization of resummation in the EW sector, is put in union with the Herwig parton shower environment. The {rm LHE} format of the attendant output event file means that all other conventional parton shower environments are available to the would-be user of the resulting new MC. For this reason (and others -- see the text) we henceforth refer to the new improvement of the Herwiri2 MC as ${cal{KK}}text{MC-hh}$. Since this new MC features exact ${cal O}(alpha)$ pure weak corrections from the DIZET EW library and features the CEEX and the EEX YFS-style resummation of large multiple photon effects, it provides already the concrete path to 0.05% precision on such effects if we focus on the EW effects themselves. We therefore show predictions for observable distributions and comparisons with other approaches in the literature. This MC represents an important step in the realization of the exact amplitude-based $QEDotimes QCD$ resummation paradigm. Independently of this latter observation, the MC rigorously quantifies important EW effects in the current LHC experiments.
The neutral gauge boson $B_H$ with the mass of hundreds GeV, is the lightest particle predicted by the littlest Higgs(LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the $B_H$ production associated with the fermion pair at the ILC, i.e., $gammagammato fbar{f}B_{H}$. The studies show that the most promising processes to detect $B_H$ among $gammagammato fbar{f}B_{H}$ are $gammagammato l^+l^-B_{H}(l=e,mu)$, and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain $B_H$ decay modes is typical and such signal can be easily identified from the SM background. Therefore, $B_H$, the lightest gauge boson in the LH model would be detectable at the photon collider realized at the ILC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا