No Arabic abstract
To function as gene regulatory elements in response to environmental signals, riboswitches must adopt specific secondary structures on appropriate time scales. We employ kinetic Monte Carlo simulation to model the time-dependent folding during transcription of TPP riboswitch expression platforms. According to our simulations, riboswitch transcriptional terminators, which must adopt a specific hairpin configuration by the time they have been transcribed, fold with higher efficiency than Shine-Dalgarno sequesterers, whose proper structure is required only at the time of ribosomal binding. Our findings suggest both that riboswitch transcriptional terminator sequences have been naturally selected for high folding efficiency, and that sequesterers can maintain their function even in the presence of significant misfolding.
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane {beta}-barrel proteins but challenging for {alpha}-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Riboswitches are cis-acting regulatory RNA elements prevalently located in the leader sequences of bacterial mRNA. An adenine sensing riboswitch cis-regulates adeninosine deaminase gene (add) in Vibrio vulnificus. The structural mechanism regulating its conformational changes upon ligand binding mostly remains to be elucidated. In this open framework it has been suggested that the ligand stabilizes the interaction of the distal kissing loop complex. Using accurate full-atom molecular dynamics with explicit solvent in combination with enhanced sampling techniques and advanced analysis methods it could be possible to provide a more detailed perspective on the formation of these tertiary contacts. In this work, we used umbrella sampling simulations to study the thermodynamics of the kissing loop complex in the presence and in the absence of the cognate ligand. We enforced the breaking/formation of the loop-loop interaction restraining the distance between the two loops. We also assessed the convergence of the results by using two alternative initialization protocols. A structural analysis was performed using a novel approach to analyze base contacts. Our simulations qualitatively indicated that the ligand could stabilize the kissing loop complex. We also compared with previously published simulation studies. Kissing complex stabilization given by the ligand was compatible with available experimental data. However, the dependence of its value on the initialization protocol of the umbrella sampling simulations posed some questions on the quantitative interpretation of the results and called for better converged enhanced sampling simulations.
We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution NMR data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions.
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.
Energy landscape theory describes how a full-length protein can attain its native fold after sampling only a tiny fraction of all possible structures. Although protein folding is now understood to be concomitant with synthesis on the ribosome there have been few attempts to modify energy landscape theory by accounting for cotranslational folding. This paper introduces a model for cotranslational folding that leads to a natural definition of a nested energy landscape. By applying concepts drawn from submanifold differential geometry the dynamics of protein folding on the ribosome can be explored in a quantitative manner and conditions on the nested potential energy landscapes for a good cotranslational folder are obtained. A generalisation of diffusion rate theory using van Kampens technique of composite stochastic processes is then used to account for entropic contributions and the effects of variable translation rates on cotranslational folding. This stochastic approach agrees well with experimental results and Hamiltionian formalism in the deterministic limit.