Do you want to publish a course? Click here

The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

231   0   0.0 ( 0 )
 Added by Michael Prentiss
 Publication date 2010
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.



rate research

Read More

146 - David S. Tourigny 2013
Energy landscape theory describes how a full-length protein can attain its native fold after sampling only a tiny fraction of all possible structures. Although protein folding is now understood to be concomitant with synthesis on the ribosome there have been few attempts to modify energy landscape theory by accounting for cotranslational folding. This paper introduces a model for cotranslational folding that leads to a natural definition of a nested energy landscape. By applying concepts drawn from submanifold differential geometry the dynamics of protein folding on the ribosome can be explored in a quantitative manner and conditions on the nested potential energy landscapes for a good cotranslational folder are obtained. A generalisation of diffusion rate theory using van Kampens technique of composite stochastic processes is then used to account for entropic contributions and the effects of variable translation rates on cotranslational folding. This stochastic approach agrees well with experimental results and Hamiltionian formalism in the deterministic limit.
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane {beta}-barrel proteins but challenging for {alpha}-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Models of protein energetics which neglect interactions between amino acids that are not adjacent in the native state, such as the Go model, encode or underlie many influential ideas on protein folding. Implicit in this simplification is a crucial assumption that has never been critically evaluated in a broad context: Detailed mechanisms of protein folding are not biased by non-native contacts, typically imagined as a consequence of sequence design and/or topology. Here we present, using computer simulations of a well-studied lattice heteropolymer model, the first systematic test of this oft-assumed correspondence over the statistically significant range of hundreds of thousands of amino acid sequences, and a concomitantly diverse set of folding pathways. Enabled by a novel means of fingerprinting folding trajectories, our study reveals a profound insensitivity of the order in which native contacts accumulate to the omission of non-native interactions. Contrary to conventional thinking, this robustness does not arise from topological restrictions and does not depend on folding rate. We find instead that the crucial factor in discriminating among topological pathways is the heterogeneity of native contact energies. Our results challenge conventional thinking on the relationship between sequence design and free energy landscapes for protein folding, and help justify the widespread use of Go-like models to scrutinize detailed folding mechanisms of real proteins.
We develop a theoretical approach to the protein folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps in the protein folding problem are removed and simulating the entire reaction in atomistic details using existing computers becomes feasible. In addition, this formalism provides a natural framework to investigate the relationships between thermodynamical and kinetic aspects of the folding. For example, it is possible to show that, in order to have a large probability to remain unchanged under Langevin diffusion, the native state has to be characterized by a small conformational entropy. We discuss how to determine the most probable folding pathway, to identify configurations representative of the transition state and to compute the most probable transition time. We perform an illustrative application of these ideas, studying the conformational evolution of alanine di-peptide, within an all-atom model based on the empiric GROMOS96 force field.
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein show a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavoring early knotting events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا