No Arabic abstract
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate emph{ab initio} energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave emph{et al.} (J. Chem. Phys. textbf{137}, 164102 (2012)), in which the terms in the expansion are obtained from calculations on monomers, dimers, etc. acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Mo{}ller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 m$E_{rm h}$/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
Molecular adsorption on surfaces plays a central role in catalysis, corrosion, desalination, and many other processes of relevance to industry and the natural world. Few adsorption systems are more ubiquitous or of more widespread importance than those involving water and carbon, and for a molecular level understanding of such interfaces water monomer adsorption on graphene is a fundamental and representative system. This system is particularly interesting as it calls for an accurate treatment of electron correlation effects, as well as posing a practical challenge to experiments. Here, we employ many-body electronic structure methodologies that can be rigorously converged and thus provide faithful references for the molecule-surface interaction. In particular, we use diffusion Monte-Carlo (DMC), coupled cluster (CCSD(T)), as well as the random phase approximation (RPA) to calculate the strength of the interaction between water and an extended graphene surface. We establish excellent, sub-chemical, agreement between the complementary high-level methodologies, and an adsorption energy estimate in the most stable configuration of approximately -100,meV is obtained. We also find that the adsorption energy is rather insensitive to the orientation of the water molecule on the surface, despite different binding motifs involving qualitatively different interfacial charge reorganisation. In producing the first demonstrably accurate adsorption energies for water on graphene this work also resolves discrepancies amongst previously reported values for this widely studied system. It also paves the way for more accurate and reliable studies of liquid water at carbon interfaces with cheaper computational methods, such as density functional theory and classical potentials.
We study within the many-body Greens function $GW$ and Bethe-Salpeter formalisms the excitation energies of several coumarin dyes proposed as an efficient alternative to ruthenium complexes for dye-sensitized solar cells. Due to their internal donor-acceptor structure, these chromophores present low-lying excitations showing a strong intramolecular charge-transfer character. We show that combining $GW$ and Bethe-Salpeter calculations leads to charge-transfer excitation energies and oscillator strengths in excellent agreement with reference range-separated functional studies or coupled-cluster calculations. The present results confirm the ability of this family of approaches to describe accurately Frenkel and charge-transfer photo-excitations in both extended and finite size systems without any system-dependent adjustable parameter, paving the way to the study of dye-sensitized semiconducting surfaces.
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for excited states owing, in part, to the absence of a derivative discontinuity in the xc energy ($Delta$), which relates a many-electron energy difference to the corresponding KS energy difference. We demonstrate, analytically and numerically, how the relationship between KS and many-electron energies leads to the step structures observed in the exact xc potential, in four scenarios: electron addition, molecular dissociation, excitation of a finite system, and charge transfer. We further show that steps in the potential can be obtained also with common xc approximations, as simple as the LDA, when addressed from the ensemble perspective. The article therefore highlights how capturing the relationship between KS and many-electron energies with advanced xc approximations is crucial for accurately calculating excitations, as well as the ground-state density and energy of systems which consist of distinct subsystems.
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for solid, liquid and cluster forms of water. We use a many-body separation of the total energy into its 1-body, 2-body (2B) and beyond-2-body (B2B) components to analyze the deficiencies of two popular DFT approximations. We show how machine-learning methods make this analysis possible for ice structures as well as for water clusters. We find that the crucial energy balance between compact and extended geometries can be distorted by 2B and B2B errors, and that both types of first-principles error are important.
Among the many existing molecular models of water, the MB-pol many-body potential has emerged as a remarkably accurate model, capable of reproducing thermodynamic, structural, and dynamic properties across waters solid, liquid, and vapor phases. In this work, we assessed the performance of MB-pol with respect to an important set of properties related to vapor-liquid coexistence and interfacial behavior. Through direct coexistence classical molecular dynamics simulations at temperatures 400 K < T < 600 K, we calculated properties such as equilibrium coexistence densities, vapor-liquid interfacial tension, vapor pressure, and enthalpy of vaporization, and compared the MB-pol results to experimental data. We also compared rigid vs. fully flexible variants of the MB-pol model and evaluated system size effects for the properties studied. We found that the MB-pol model predictions are in good agreement with experimental data, even for temperatures approaching the vapor-liquid critical point; this agreement was largely insensitive to system size or the rigid vs. flexible treatment of the intramolecular degrees of freedom. These results attest to the chemical accuracy of MB-pol and its high degree of transferability, thus enabling MB-pols application across a large swath of waters phase diagram.