Do you want to publish a course? Click here

Many-body Greens function study of coumarins for dye-sensitized solar cells

160   0   0.0 ( 0 )
 Added by Xavier Blase
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study within the many-body Greens function $GW$ and Bethe-Salpeter formalisms the excitation energies of several coumarin dyes proposed as an efficient alternative to ruthenium complexes for dye-sensitized solar cells. Due to their internal donor-acceptor structure, these chromophores present low-lying excitations showing a strong intramolecular charge-transfer character. We show that combining $GW$ and Bethe-Salpeter calculations leads to charge-transfer excitation energies and oscillator strengths in excellent agreement with reference range-separated functional studies or coupled-cluster calculations. The present results confirm the ability of this family of approaches to describe accurately Frenkel and charge-transfer photo-excitations in both extended and finite size systems without any system-dependent adjustable parameter, paving the way to the study of dye-sensitized semiconducting surfaces.



rate research

Read More

We study within the many-body Greens function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.
We propose a new linearizable model for the nonlinear photocurrent-voltage characteristics of nanocrystalline TiO$_2$ dye sensitized solar cells based on first principles and report predicted values for fill factors. Upon renormalization diverse experimental photocurrent-voltage data collapse onto a single universal function. These advances allow the estimation of the complete current-voltage curve and the fill factor from any three experimental data points, e.g., the open circuit voltage, the short circuit current and one intermediate measurement. The theoretical underpinning provides insight into the physical mechanisms responsible for the remarkably large fill factors as well as their known dependence on the open circuit voltage.
In this research, the effect of Magnesium Fluoride (MgF2) Anti-Reflection (AR) layer was investigated in quantum dot sensitized solar cells (QDSCs). MgF2 nanoparticles with the dominant size of 20 nm were grown by a thermal evaporation method and a thin layer was formed on the front side of the fluorine-doped tin oxide (FTO) substrate. In order to study the effect of the AR layer on the efficiency of solar cells, this substrate was utilized in CdS QDSCs. In this conventional structure of QDSC, TiO2 nanocrystals (NCs) were applied on the FTO substrate, and then it was sensitized with CdS quantum dots (QDs). According to the results, the QDSCs with MgF2 AR layer represented the maximum Power Conversion Efficiency (PCE) of 3%. This efficiency was increased by about 47% compared to the reference cell without the AR layer. The reason is attributed to the presence of the AR layer and the reduction of incident light reflected from the surface of the solar cell.
In this work, we propose an efficient computational scheme for first-principle quantum transport simulations to evaluate the open-boundary conditions. Its partitioning differentiates from conventional methods in that the contact self-energy matrices are constructed on smaller building blocks, principal layers (PL), while conventionally it was restricted to have the same lateral dimensions of the adjoining atoms in a channel region. Here, we obtain the properties of bulk electrodes through non-equilibrium Greens function (NEGF) approach with significant improvements in the computational efficiency without sacrificing the accuracy of results. To exemplify the merits of the proposed method we investigate the carrier density dependency of contact resistances in silicon nanowire devices connected to bulk metallic contacts.
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate emph{ab initio} energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave emph{et al.} (J. Chem. Phys. textbf{137}, 164102 (2012)), in which the terms in the expansion are obtained from calculations on monomers, dimers, etc. acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Mo{}ller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 m$E_{rm h}$/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا