Do you want to publish a course? Click here

Detection prospects for short time-scale transient events at VHE with current and next generation Cherenkov observatories

280   0   0.0 ( 0 )
 Added by Saverio Lombardi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the current view of Gamma-Ray Burst (GRB) phenomena, an emission component extending up to the very-high energy (VHE, E > 30 GeV) domain is though to be a relatively common feature at least in the brightest events. This leads to an unexpected richness of possible theoretical models able to describe such phenomenology. Hints of emission at tens of GeV are indeed known since the EGRET observations during the 90s and confirmed in the Fermi-LAT data. However, our comprehension of these phenomena is still far to be satisfactory. In this respect, the VHE characterization of GRBs may constitute a breakthrough for understanding their physics and, possibly, for providing decisive clues for the discrimination among different proposed emission mechanisms, which are barely distinguishable at lower energies. The current generation of Cherenkov observatories, such as the MAGIC telescopes, have opened the possibility to extend the measurement of GRB emission, and in general to any short time-scale transient phenomena, fromfew tens of GeV up to the TeV energy range, with a higher sensitivity with respect to gamma-ray space-based instruments. In the near future, a crucial role for the VHE observations of GRBs will be played by the Cherenkov Telescope Array (CTA), thanks to its about one order of magnitude better sensitivity and lower energy threshold with respect to current instruments. In this contribution, we present a method aimed at providing VHE detection prospects for observations of GRB-like transient events with Cherenkov telescopes. In particular, we consider the observation of the transient event GRB 090102 as a test case for the method and show the achieved detection prospects under different observational conditions for the MAGIC telescopes and CTA.



rate research

Read More

Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of which were associated with high energy photons $(E > 10, mathrm{GeV})$, by the Large Area Telescope (LAT). More recently, follow-up observations by Cherenkov telescopes detected very high energy emission $(E > 100, mathrm{GeV})$ from GRBs, opening up a new observational window with implications on the interpretation of their central engines and on the propagation of very energetic photons across the Universe. Here, we use the data published in the 2nd Fermi-LAT Gamma Ray Burst Catalogue to characterise the duration, luminosity, redshift and light curve of the high energy GRB emission. We extrapolate these properties to the very high energy domain, comparing the results with available observations and with the potential of future instruments. We use observed and simulated GRB populations to estimate the chances of detection with wide-field ground-based $gamma$-ray instruments. Our analysis aims to evaluate the opportunities of the Southern Wide-field-of-view Gamma-ray Observatory (SWGO), to be installed in the Southern Hemisphere, to complement CTA. We show that a low-energy observing threshold $(E_{low} < 200, mathrm{GeV})$, with good point source sensitivity $(F_{lim} approx 10^{-11}, mathrm{erg, cm^{-2}, s^{-1}}$ in $1, mathrm{yr})$, are optimal requirements to work as a GRB trigger facility and to probe the burst spectral properties down to time scales as short as $10, mathrm{s}$, accessing a time domain that will not be available to IACT instruments.
263 - Ambra Di Piano 2021
The Cherenkov Telescope Array (CTA) will be the next generation ground-based observatory for very-high-energy (VHE) gamma-ray astronomy, with the deployment of tens of highly sensitive and fast-reacting Cherenkov telescopes. It will cover a wide energy range (20 GeV - 300 TeV) with unprecedented sensitivity. To maximize the scientific return, the observatory will be provided with an online software system that will perform the first analysis of scientific data in real-time. This study investigates the precision and accuracy of available science tools and analysis techniques for the short-term detection of gamma-ray sources, in terms of sky localization, detection significance and, if significant detection is achieved, a first estimation of the integral photon flux. The scope is to evaluate the feasibility of the algorithms implementation in the real-time analysis of CTA. In this contribution we present a general overview of the methods and some of the results for the test case of the short-term detection of a gamma-ray burst afterglow, as the VHE counterpart of a gravitational wave event.
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a FOV of about 10 deg and an angular resolution of about 0.2 deg, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 square meters and about 300m spacing, distributed across an area of about 10 square kilometers. We will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt SiPMs as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide FOV.
Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries.
High precision astrometry provides the foundation to resolve many fundamental problems in astrophysics. The application of astrometric studies spans a wide range of fields, and has undergone enormous growth in recent years. This is as a consequence of the increasing measurement precision and wide applicability, which is due in turn to the development of new techniques. Forthcoming next generation observatories have the potential to further increase the astrometric precision, providing there is a matching improvement in the methods to correct for systematic errors. The EVN and other observatories are providing demonstrations of these and are acting as pathfinders for next-generation telescopes such as the SKA and ngVLA. We will review the perspectives for the coming facilities and examples of the current state-of-the-art for astrometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا