Do you want to publish a course? Click here

The next generation Cherenkov Telescope Array observatory: CTA

174   0   0.0 ( 0 )
 Added by Stefano Vercellone
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a FOV of about 10 deg and an angular resolution of about 0.2 deg, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 square meters and about 300m spacing, distributed across an area of about 10 square kilometers. We will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt SiPMs as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide FOV.



rate research

Read More

The Cherenkov Telescope Array (CTA) Observatory, with dozens of telescopes located in both the Northern and Southern Hemispheres, will be the largest ground-based gamma-ray observatory and will provide broad energy coverage from 20 GeV to 300 TeV. The large effective area and field-of-view, coupled with the fast slewing capability and unprecedented sensitivity, make CTA a crucial instrument for the future of ground-based gamma-ray astronomy. To maximise the scientific return, the array will send alerts on transients and variable phenomena (e.g. gamma-ray burst, active galactic nuclei, gamma-ray binaries, serendipitous sources). Rapid and effective communication to the community requires a reliable and automated system to detect and issue candidate science alerts. This automation will be accomplished by the Science Alert Generation (SAG) pipeline, a key system of the CTA Observatory. SAG is part of the Array Control and Data Acquisition (ACADA) working group. The SAG working group develops the pipelines to perform data reconstruction, data quality monitoring, science monitoring and real-time alert issuing during observations to the Transients Handler functionality of ACADA. SAG is the system that performs the first real-time scientific analysis after the data acquisition. The system performs analysis on multiple time scales (from seconds to hours). abrb{SAG must issue candidate science alerts within} 20 seconds from the data taking and with sensitivity at least half of the CTA nominal sensitivity. These challenging requirements must be fulfilled by managing trigger rates of tens of kHz from the arrays. Dedicated and highly optimised software and hardware architecture must thus be designed and tested. In this work, we present the general architecture of the ACADA-SAG system.
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document.
The Cherenkov Telescope Array (CTA) Consortium is developing the new generation of ground observatories for the detection of ultra-high energy gamma-rays. The Italian Institute of Nuclear Physics (INFN) is participating to the R&D of a possible solution for the Cherenkov photon cameras based on Silicon Photomultiplier (SiPM) detectors sensitive to Near Ultraviolet (NUV) energies. The latest NUV-HD SiPM technology achieved by the collaboration of INFN with Fondazione Bruno Kessler (FBK) is based on $30mumbox{m}times30mumbox{m}$ micro-cell sensors arranged in a $6times6;mbox{mm}^2$ area. Single SiPMs produced by FBK have been tested and their performances have been found to be suitable to equip the CTA cameras. Currently, INFN is developing the concept, mechanics and electronics for prototype modules made of 64 NUV-HD SiPMs intended to equip a possible update of the CTA Prototype Schwarzschild-Couder Telescope (pSCT) telescope. The performances of NUV-HD SiPMs and the design and tests of multi-SiPM modules are reviewed in this contribution.
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1-100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10-15%, is well suited to study relatively bright sources (a few $times 10^{-12}$erg cm$^{-2}$s$^{-1}$ at 10 TeV) at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC) and future high-altitude extensive air-shower detectors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا