No Arabic abstract
We present the single event effect (SEE) tolerance of a mixed-signal application-specific integrated circuit (ASIC) developed for a charge-coupled device camera onboard a future X-ray astronomical mission. We adopted proton and heavy ion beams at HIMAC/NIRS in Japan. The particles with high linear energy transfer (LET) of 57.9 MeV cm^{2}/mg is used to measure the single event latch-up (SEL) tolerance, which results in a sufficiently low cross-section of sigma_{SEL} < 4.2x10^{-11} cm^{2}/(IonxASIC). The single event upset (SEU) tolerance is estimated with various kinds of species with wide range of energy. Taking into account that a part of the protons creates recoiled heavy ions that has higher LET than that of the incident protons, we derived the probability of SEU event as a function of LET. Then the SEE event rate in a low-earth orbit is estimated considering a simulation result of LET spectrum. SEL rate is below once per 49 years, which satisfies the required latch-up tolerance. The upper limit of the SEU rate is derived to be 1.3x10^{-3}events/sec. Although the SEU events cannot be distinguished from the signals of X-ray photons from astronomical objects, the derived SEU rate is below 1.3% of expected non-X-ray background rate of the detector and hence these events should not be a major component of the instrumental background.
We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure of potential for signal charges by increasing the implant concentration in the channel. The new device was exposed up to approximately $7.9 times 10^{10} mathrm{~protons~cm^{-2}}$ at 100 MeV. The charge transfer inefficiency was estimated as a function of proton fluence with an ${}^{55} mathrm{Fe}$ source. A device without the notch structure was also examined for comparison. The result shows that the notch device has a significantly higher radiation hardness than those without the notch structure including the device adopted for Hitomi. This proves that the new CCD is radiation tolerant for space applications with a sufficient margin.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic<13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm-1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048x2048 imaging array and 2048x2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.
In this work, we describe the optical properties of the single photoelectron (SPE) calibration system designed for NectarCAM, a camera proposed for the Medium Sized Telescopes (MST) of the Cherenkov Telescope Array (CTA). One of the goals of the SPE system, as integral part of the NectarCAM camera, consists in measuring with high accuracy the gain of its photo-detection chain. The SPE system is based on a white painted screen where light pulses are injected through a fishtail light guide from a dedicated flasher. The screen - placed 15 mm away from the focal plane - is mounted on an XY motorization that allows movements over all the camera plane. This allows in-situ measurements of the SPE spectra via a complete scan of the 1855 photo-multiplier tubes (PMTs) of NectarCAM. This calibration process will enable the reduction of the systematic uncertainties on the energy reconstruction of $gamma$-rays coming from distant astronomical sources and detected by CTA.
We report results obtained during the characterization of a commercial front-illuminated progressive scan interline transfer CCD camera. We demonstrate that the unmodified camera operates successfully in temperature and pressure conditions (-40C, 4mBar) representative of a high altitude balloon mission. We further demonstrate that the centroid of a well-sampled star can be determined to better than 2% of a pixel, even though the CCD is equipped with a microlens array. This device has been selected for use in a closed-loop star-guiding and tip-tilt correction system in the BIT-STABLE balloon mission.
IDeF-X HD is a 32-channel analog front-end with self-triggering capability optimized for the readout of 16 x 16 pixels CdTe or CdZnTe pixelated detectors to build low power micro gamma camera. IDeF-X HD has been designed in the standard AMS CMOS 0.35 microns process technology. Its power consumption is 800 micro watt per channel. The dynamic range of the ASIC can be extended to 1.1 MeV thanks to the in-channel adjustable gain stage. When no detector is connected to the chip and without input current, a 33 electrons rms ENC level is achieved after shaping with 10.7 micro seconds peak time. Spectroscopy measurements have been performed with CdTe Schottky detectors. We measured an energy resolution of 4.2 keV FWHM at 667 keV (137-Cs) on a mono-pixel configuration. Meanwhile, we also measured 562 eV and 666 eV FWHM at 14 keV and 60 keV respectively (241-Am) with a 256 small pixel array and a low detection threshold of 1.2 keV. Since IDeF-X HD is intended for space-borne applications in astrophysics, we evaluated its radiation tolerance and its sensitivity to single event effects. We demonstrated that the ASIC remained fully functional without significant degradation of its performances after 200 krad and that no single event latch-up was detected putting the Linear Energy Transfer threshold above 110 MeV/(mg/cm2). Good noise performance and radiation tolerance make the chip well suited for X-rays energy discrimination and high-energy resolution. The chip is space qualified and flies on board the Solar Orbiter ESA mission launched in 2020.