No Arabic abstract
Necessary conditions for a soliton on a torus $M=R^m/Lambda$ to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be $L^2$ orthogonal to $ee$, the space of parallel symmetric bilinear forms on $TM$, and, further, a certain symmetric bilinear form on $ee$, called the hessian, must be positive. It is shown that, for baby Skyrme models, the first condition actually implies the second. It is also shown that, for any choice of period lattice $Lambda$, there is a baby Skyrme model which supports a soliton crystal of periodicity $Lambda$. For the three-dimensional Skyrme model, it is shown that any soliton solution on a cubic lattice which satisfies a virial constraint and is equivariant with respect to (a subgroup of) the lattice symmetries automatically satisfies both tests. This verifies in particular that the celebrated Skyrme crystal of Castillejo {it et al.}, and Kugler and Shtrikman, passes both tests.
We construct exact solitons on noncommutative tori for the type of actions arising from open string field theory. Given any projector that describes an extremum of the tachyon potential, we interpret the remaining gauge degrees of freedom as a gauge theory on the projective module determined by the tachyon. Whenever this module admits a constant curvature connection, it solves exactly the equations of motion of the effective string field theory. We describe in detail such a construction on the noncommutative tori. Whereas our exact solution relies on the coupling to a gauge theory, we comment on the construction of approximate solutions in the absence of gauge fields.
We show that the (3+1)-dimensional gauged non-linear sigma model minimally coupled to a U(1) gauge field possesses analytic solutions representing gauged solitons at finite Baryon density whose electromagnetic field is a Force Free Plasma. These gauged solitons manifest a crystalline structure and generate in a very natural way persistent currents able to support Force Free Plasma electromagnetic fields. The trajectories of charged test particles moving within these configurations can be characterized. Quite surprisingly, despite the non-integrable nature of the theory, some of the perturbations of these gauged solitons allow to identify a proper resurgent parameter. In particular, the perturbations of the solitons profile are related to the Lame operator. On the other hand, the electromagnetic perturbations on the configurations satisfy a two-dimensional effective Schrodinger equation, where the soliton background interacts with the electromagnetic perturbations through an effective two-dimensional periodic potential. We studied numerically the band energy spectrum for different values of the free parameters of the theory and we found that bands-gaps are modulated by the potential strength. Finally we compare our crystal solutions with those of the (1+1)- dimesional Gross-Neveu model.
We consider noncommutative theory of a compact scalar field. The recently discovered projector solitons are interpreted as classical vacua in the model considered. Localized solutions to the projector equation are pointed out and their brane interpretation is discussed. An example of the noncommutative soliton interpolating between such vacua is given. No strong noncommutativity limit is assumed.
We show that the leading semiclassical behavior of soliton form factors at arbitrary momentum transfer is controlled by solutions to a new wave-like integro-differential equation that describes solitons undergoing acceleration. We work in the context of two-dimensional linear sigma models with kink solitons for concreteness, but our methods are purely semiclassical and generalizable.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.