We focus on evaluating transport coefficients like drag and diffusion of heavy quarks (HQ) passing through Quark Gluon Plasma using perturbative QCD (pQCD). Experimental observable like nuclear suppression factor (RAA) of HQ is evaluated for both zero and non-zero baryonic chemical potential ({mu}_B) scenarios using Fokker- Planck equation. Theoretical estimates of RAA are contrasted with experiments.
The paper introduces the selection of new results on heavy flavours presented at the QCD and High Energy Interactions section of the XLIIIth ``Rencontres de Moriond conference.
This paper summarises a few selected topics discussed during Working Group 5 of the Deep Inelastic Scattering 2017 conference, Physics with Heavy Flavours, related to the study of charm, bottom, and top quark physics. While the programme of this Working Group was structured by thematic areas, this conference was the occasion for intense cross-pollination between traditionally disjoint research lines. The four LHC experiments all contribute to heavy-flavour physics, with some degree of overlap in most areas, while experiments at other accelerators provide vital input in complimentary kinematic regions. Theorists now have the possibility to take inputs from more sources, and experimentalists focus on measurements that maximise utility. The interplay of LHC heavy quark cross-section measurements with DIS expertise is greatly improving PDF precision, leading to much improved models that, amongst other things, better inform the prospects for future colliders.
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the features of a simple random walk, shows other traits that one would associate with a biased random walk and, at the same time, presents new properties not related with either of them. In particular, we show how the system is not fully ergodic, as not every statistic can be estimated from a single realization of the process. We further give a geometric interpretation for the origin of these irregular transition probabilities.
Studies presented in the heavy flavours working group are summarized. Very recent results of measurements at the HERA, LHC, Tevatron, STAR, PHENIX, and BaBar experiments are reviewed and new developments in theory and phenomenology are discussed. In particular, aspects of the impact of heavy flavours on global QCD analyses to determine the structure of the proton, and analyses in physics beyond the Standard Model are considered.