Do you want to publish a course? Click here

Dissipation induced macroscopic entanglement in an open optical lattice

136   0   0.0 ( 0 )
 Added by Dirk Witthaut
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method for the dissipative preparation of strongly correlated quantum states of ultracold atoms in an optical lattice via localized particle loss. The interplay of dissipation and interactions enables different types of dynamics. This ushers a new line of experimental methods to maintain the coherence of a Bose-Einstein condensate or to deterministically generate macroscopically entangled quantum states.



rate research

Read More

Recent studies of quantum circuit models have theoretically shown that frequent measurements induce a transition in a quantum many-body system, which is characterized by the change of the scaling law of the entanglement entropy from a volume law to an area law. In order to propose a way for experimentally observing this measurement-induced transition, we present numerical analyses using matrix-product states on quench dynamics of a dissipative Bose-Hubbard model with controllable two-body losses, which has been realized in recent experiments with ultracold atoms. We find that when the strength of dissipation increases, there occurs a measurement-induced transition from volume-law scaling to area-law scaling with a logarithmic correction in a region of relatively small dissipation. We also find that the strong dissipation leads to a revival of the volume-law scaling due to a continuous quantum Zeno effect. We show that dynamics starting with the area-law states exhibits the breaking of ergodicity, which can be used in experiments for distinguishing them from the volume-law states.
Non-standard Bose-Hubbard models can exhibit rich ground state phase diagrams, even when considering the one-dimensional limit. Using a self-consistent Gutzwiller diagonalisation approach, we study the mean-field ground state properties of a long-range interacting atomic gas in a one-dimensional optical lattice. We first confirm that the inclusion of long-range two-body interactions to the standard Bose-Hubbard model introduces density wave and supersolid phases. However, the introduction of pair and density-dependent tunnelling can result in new phases with two-site periodic density, single-particle transport and two-body transport order parameters. These staggered phases are potentially a mean-field signature of the known novel twisted superfluids found via a DMRG approach [PRA textbf{94}, 011603(R) (2016)]. We also observe other unconventional phases, which are characterised by sign staggered order parameters between adjacent lattice sites.
We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impuritys spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA 87Sr and NIST 171Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا