No Arabic abstract
Using the results on the $1/n$-expansion of the Verblunsky coefficients for a class of polynomials orthogonal on the unit circle with $n$ varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of four times differentiable potentials and of supports, consisting of one interval.
We give a proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally $C^{2}$ and locally $C^{3}$ function. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. We do not use asymptotics of orthogonal polynomials. We obtain the $sin$-kernel as a unique solution of a certain non-linear integro-differential equation.
The iterative method of Sinkhorn allows, starting from an arbitrary real matrix with non-negative entries, to find a so-called scaled matrix which is doubly stochastic, i.e. a matrix with all entries in the interval (0, 1) and with all line sums equal to 1. We conjecture that a similar procedure exists, which allows, starting from an arbitrary unitary matrix, to find a scaled matrix which is unitary and has all line sums equal to 1. The existence of such algorithm guarantees a powerful decomposition of an arbitrary quantum circuit.
Hochstattler, Kirsch, and Warzel showed that the semicircle law holds for generalized Curie-Weiss matrix ensembles at or above the critical temperature. We extend their result to the case of subcritical temperatures for which the correlations between the matrix entries are stronger. Nevertheless, one may use the concept of approximately uncorrelated ensembles that was first introduced in the paper mentioned above. In order to do so one needs to remove the average magnetization of the entries by an appropriate modification of the ensemble that turns out to be of rank 1 thus not changing the limiting spectral measure.
In these proceedings we summarise how the determinantal structure for the conditional overlaps among left and right eigenvectors emerges in the complex Ginibre ensemble at finite matrix size. An emphasis is put on the underlying structure of orthogonal polynomials in the complex plane and its analogy to the determinantal structure of $k$-point complex eigenvalue correlation functions. The off-diagonal overlap is shown to follow from the diagonal overlap conditioned on $kgeq2$ complex eigenvalues. As a new result we present the local bulk scaling limit of the conditional overlaps away from the origin. It is shown to agree with the limit at the origin and is thus universal within this ensemble.
Using operator methods, we generally present the level densities for kinds of random matrix unitary ensembles in weak sense. As a corollary, the limit spectral distributions of random matrices from Gaussian, Laguerre and Jacobi unitary ensembles are recovered. At the same time, we study the perturbation invariability of the level densities of random matrix unitary ensembles. After the weight function associated with the 1-level correlation function is appended a polynomial multiplicative factor, the level density is invariant in the weak sense.