Do you want to publish a course? Click here

Bulk Universality for Unitary Matrix Models

284   0   0.0 ( 0 )
 Added by Mihail Poplavskyi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give a proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally $C^{2}$ and locally $C^{3}$ function. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. We do not use asymptotics of orthogonal polynomials. We obtain the $sin$-kernel as a unique solution of a certain non-linear integro-differential equation.



rate research

Read More

203 - Mihail Poplavskyi 2013
Using the results on the $1/n$-expansion of the Verblunsky coefficients for a class of polynomials orthogonal on the unit circle with $n$ varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of four times differentiable potentials and of supports, consisting of one interval.
The iterative method of Sinkhorn allows, starting from an arbitrary real matrix with non-negative entries, to find a so-called scaled matrix which is doubly stochastic, i.e. a matrix with all entries in the interval (0, 1) and with all line sums equal to 1. We conjecture that a similar procedure exists, which allows, starting from an arbitrary unitary matrix, to find a scaled matrix which is unitary and has all line sums equal to 1. The existence of such algorithm guarantees a powerful decomposition of an arbitrary quantum circuit.
In these proceedings we summarise how the determinantal structure for the conditional overlaps among left and right eigenvectors emerges in the complex Ginibre ensemble at finite matrix size. An emphasis is put on the underlying structure of orthogonal polynomials in the complex plane and its analogy to the determinantal structure of $k$-point complex eigenvalue correlation functions. The off-diagonal overlap is shown to follow from the diagonal overlap conditioned on $kgeq2$ complex eigenvalues. As a new result we present the local bulk scaling limit of the conditional overlaps away from the origin. It is shown to agree with the limit at the origin and is thus universal within this ensemble.
There is a decomposition of a Lie algebra for open matrix chains akin to the triangular decomposition. We use this decomposition to construct unitary irreducible representations. All multiple meson states can be retrieved this way. Moreover, they are the only states with a finite number of non-zero quantum numbers with respect to a certain set of maximally commuting linearly independent quantum observables. Any other state is a tensor product of a multiple meson state and a state coming from a representation of a quotient algebra that extends and generalizes the Virasoro algebra. We expect the representation theory of this quotient algebra to describe physical systems at the thermodynamic limit.
173 - Zhengdong Wang , Kuihua Yan 2005
Using operator methods, we generally present the level densities for kinds of random matrix unitary ensembles in weak sense. As a corollary, the limit spectral distributions of random matrices from Gaussian, Laguerre and Jacobi unitary ensembles are recovered. At the same time, we study the perturbation invariability of the level densities of random matrix unitary ensembles. After the weight function associated with the 1-level correlation function is appended a polynomial multiplicative factor, the level density is invariant in the weak sense.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا