Do you want to publish a course? Click here

Wilson ratio of Fermi gases in one dimension

299   0   0.0 ( 0 )
 Added by Xi-Wen Guan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs and of excess fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio exhibits anomalous enhancement at the two critical points due to the sudden change in the density of states. Despite a breakdown of the quasiparticle description in one dimension, two important features of the Fermi liquid are retained, namely the specific heat is linearly proportional to temperature whereas the susceptibility is independent of temperature. In contrast to the phenomenological TLL parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of interacting fermions in one, two and three dimensions.



rate research

Read More

We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas near the $p$-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two parameters, that is, $p$-wave scattering length and effective range. At the unitarity limit where the $p$-wave scattering length diverges and the effective range is reduced to zero without conflicting with the causality bound, the system obeys universal thermodynamics as observed in a unitary Fermi gas with contact $s$-wave interaction in three dimensions. It is in contrast to a Fermi gas with the $p$-wave resonance in three dimensions in which the effective range is inevitably finite. We present the universal equation of state in this unitary $p$-wave Fermi gas within the many-body $T$-matrix approach as well as the virial expansion method. Moreover, we examine the single-particle spectral function in the high-density regime where the virial expansion is no longer valid. On the basis of the Hartree-like self-energy shift at the divergent scattering length, we conjecture that the equivalence of the Bertsch parameter across spatial dimensions holds even for a one-dimensional unitary $p$-wave Fermi gas.
The degenerate Bose-Fermi (BF) mixtures in one dimension present a novel realization of two decoupled Luttinger liquids with bosonic and fermionic degrees of freedom at low temperatures. However, the transport properties of such decoupled Luttinger liquids of charges have not yet been studied. Here we apply generalized hydrodynamics to study the transport properties of one-dimensional (1D) BF mixtures with delta-function interactions. The initial state is set up as the semi-infinite halves of two 1D BF mixtures with different temperatures, joined together at the time $t=0$ and the junction point $x=0$. Using the Bethe ansatz solution, we first rigorously prove the existence of conserved charges for both the bosonic and fermionic degrees of freedom, preserving the Euler-type continuity equations. We then analytically obtain the distributions of the densities and currents of the local conserved quantities which solely depend on the ratio $xi=x/t$. The left and right moving quasiparticle excitations of the two halves form multiple segmented light-cone hydrodynamics that display ballistic transport of the conserved charge densities and currents in different degrees of freedom. Our analytical results provide a deep understanding of the quantum transport of multi-component Luttinger liquids in quantum systems with both bosonic and fermionic statistics.
107 - Yajiang Hao 2016
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of single particle and spin components, the ground state wavefunction and therefore the density distributions, magnetization distribution, one body density matrix, and momentum distribution for each components are obtained. It is shown that the spinor Bose gases of different magnetization exhibit the same total density profiles in the full interaction regime, which evolve from the single peak structure embodying the properties of Bose gases to the fermionized shell structure of spin-polarized fermions. But each components display different density profiles, and magnetic domains emerge in the strong interaction limit for $M=0.25$. In the strong interaction limit, one body density matrix and the momentum distributions exhibit the same behaviours as those of spin-polarized fermions. The fermionization of momentum distribution takes place, in contrast to the $delta$-function-like distribution of single component Bose gases in the full interaction region.
Following the recent proposal to create quadrupolar gases [S.G. Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013)], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional systems, and derive the quantum phase diagram of ultra-cold fermionic atoms interacting via quadrupole-quadrupole interaction within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles $theta^{c}_{B,1}$ and $theta^{c}_{B,2}$ between $0$ to $pi/2$, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudo-spin language with regards to the two 1D systems, the system undergoes a spin-gap transition and displays a zig-zag density pattern, above $theta^{c}_{B,2}$ and below $theta^{c}_{B,1}$. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density wave order compete with each other. The latter corresponds to a bond order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
We study spin- and mass-imbalanced mixtures of spin-$tfrac{1}{2}$ fermions interacting via an attractive contact potential in one spatial dimension. Specifically, we address the influence of unequal particle masses on the pair formation by means of the complex Langevin method. By computing the pair-correlation function and the associated pair-momentum distribution we find that inhomogeneous pairing is present for all studied spin polarizations and mass imbalances. To further characterize the pairing behavior, we analyze the density-density correlations in momentum space, the so-called shot noise, which is experimentally accessible through time-of-flight imaging. At finite spin polarization, the latter is known to show distinct maxima at momentum configurations associated with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability. Besides those maxima, we find that additional features emerge in the noise correlations when mass imbalance is increased, revealing the stability of FFLO-type correlations against mass imbalance and furnishing an experimentally accessible signature to probe this type of pairing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا