No Arabic abstract
Following the recent proposal to create quadrupolar gases [S.G. Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013)], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional systems, and derive the quantum phase diagram of ultra-cold fermionic atoms interacting via quadrupole-quadrupole interaction within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles $theta^{c}_{B,1}$ and $theta^{c}_{B,2}$ between $0$ to $pi/2$, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudo-spin language with regards to the two 1D systems, the system undergoes a spin-gap transition and displays a zig-zag density pattern, above $theta^{c}_{B,2}$ and below $theta^{c}_{B,1}$. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density wave order compete with each other. The latter corresponds to a bond order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum information science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of $^{40}$K atoms.
We consider dipolar bosons in two tubes of one-dimensional lattices, where the dipoles are aligned to be maximally repulsive and the particle filling fraction is the same in each tube. In the classical limit of zero inter-site hopping, the particles arrange themselves into an ordered crystal for any rational filling fraction, forming a complete devils staircase like in the single tube case. Turning on hopping within each tube then gives rise to a competition between the crystalline Mott phases and a liquid of defects or solitons. However, for the two-tube case, we find that solitons from different tubes can bind into pairs for certain topologies of the filling fraction. This provides an intriguing example of pairing that is purely driven by correlations close to a Mott insulator.
Alkaline-earth and ytterbium cold atomic gases make it possible to simulate SU(N)-symmetric fermionic systems in a very controlled fashion. Such a high symmetry is expected to give rise to a variety of novel phenomena ranging from molecular Luttinger liquids to (symmetry- protected) topological phases. We review some of the phases that can be stabilized in a one dimensional lattice. The physics of this multicomponent Fermi gas turns out to be much richer and more exotic than in the standard SU(2) case. For N > 2, the phase diagram is quite rich already in the case of the single-band model, including a molecular Luttinger liquid (with dominant superfluid instability in the N-particle channel) for incommensurate fillings, as well as various Mott-insulating phases occurring at commensurate fillings. Particular attention will be paid to the cases with additional orbital degree of freedom (which is accessible experimentally either by taking into account two atomic states or by putting atoms in the p-band levels). We introduce two microscopic models which are relevant for these cases and discuss their symmetries and strong coupling limits. More intriguing phase diagrams are then presented including, for instance, symmetry protected topological phases characterized by non-trivial edge states.
The highly controllable ultracold atoms in a one-dimensional (1D) trap provide a new platform for the ultimate simulation of quantum magnetism. In this regard, the Neel-antiferromagnetism and the itinerant ferromagnetism are of central importance and great interest. Here we show that these magnetic orders can be achieved in the strongly interacting spin-1/2 trapped Fermi gases with additional p-wave interactions. In this strong coupling limit, the 1D trapped Fermi gas exhibit an effective Heisenberg spin XXZ chain in the anisotropic p-wave scattering channels. For a particular p-wave attraction or repulsion within the same species of fermionic atoms, the system displays ferromagnetic domains with full spin segregation or the anti-ferromagnetic spin configuration in the ground state. Such engineered magnetisms are likely to be probed in a quasi-1D trapped Fermi gas of $^{40}$ K atoms with very close s-wave and p-wave Feshbach resonances.
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsive, but rather has an attractive part due to high-order scattering processes through transverse excited states. The attractive part can induce bound state and cause scattering resonances. This represents the dipole induced resonance in low-dimension. We work out an unconventional behavior of low-energy phase shift for this effective potential and show how it evolves across a resonance. Based on the phase shift, the interaction energy of spinless bosons is obtained using asymptotic Bethe ansatz. Despite of long-range nature of dipolar interaction, we find that a behavior similar as short-range Lieb-Linger gas emerges at the resonance regime.