No Arabic abstract
We study numerically the phase-ordering kinetics of the two-dimensional site-diluted Ising model. The data can be interpreted in a framework motivated by renormalization-group concepts. Apart from the usual fixed point of the non-diluted system, there exist two disorder fixed points, characterized by logarithmic and power-law growth of the ordered domains. This structure gives rise to a rich scaling behavior, with an interesting crossover due to the competition between fixed points, and violation of superuniversality.
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was $L = 20-120$ and the concentration of diluted sites $q=0.1, 0.2, 0.3$. Its pure version displays a second-order phase transition with a vanishing specific heat critical exponent $alpha$, thus, the Harris criterion is inconclusive, in that disorder is a relevant or irrelevant perturbation for the critical behavior of the pure system. The main effort was focused on the specific heat and magnetic susceptibility. We have also looked at the probability distribution of susceptibility, pseudocritical temperatures and specific heat for assessing self-averaging. The study was carried out in appropriate restricted but dominant energy subspaces. By applying the finite-size scaling analysis, the correlation length exponent $ u$ was found to be greater than one, whereas the ratio of the critical exponents ($alpha / u$) is negative and ($gamma / u$) retains its pure Ising model value supporting weak universality.
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-medium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the different fixed points of the model as a function of the bond dilution.
By tempered Monte Carlo simulations, we study 2D site-diluted dipolar Ising systems. Dipoles are randomly placed on a fraction x of all L^2 sites in a square lattice, and point along a common crystalline axis. For x_c< x<=1, where x_c = 0.79(5), we find an antiferromagnetic phase below a temperature which vanishes as x approaches x_c from above. At lower values of x, we study (i) distributions of the spin--glass (SG) overlap q, (ii) their relative mean square deviation Delta_q^2 and kurtosis and (iii) xi_L/L, where xi_L is a SG correlation length. From their variation with temperature and system size, we find that the paramagnetic phase covers the entire T>0 range. Our results enable us to obtain an estimate of the critical exponent associated to the correlation length at T=0, 1/nu=0.35(10).
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.
We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $bar{eta}=2eta$, where $eta$ and $bar{eta}$ are the critical exponents describing the power-law decay of the connected and disconnected correlation functions and we illustrate, using various finite-size measures and properly defined noise to signal ratios, the strong violation of self-averaging of the model in the ordered phase.