Do you want to publish a course? Click here

Nuclear temperatures from the evaporation fragment spectra and observed anomalies

116   0   0.0 ( 0 )
 Added by Amlan Ray
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The extreme back-angle evaporation spectra of alpha, lithium, beryllium, boron and carbon from different compound nuclei near A=100 (EX=76-210 MeV) have been compared with the predictions of standard statistical model codes such as CASCADE and GEMINI. It was found that the shapes of the alpha spectra agree well with the predictions of the statistical models. However the spectra of lithium, beryllium, boron and carbon show significantly gentler slopes implying higher temperature of the residual nuclei, even though the spectra satisfy all other empirical criteria of statistical emissions. The observed slope anomaly was found to be largest for lithium and decreases at higher excitation energy. These results could not be understood by adjusting the parameters of the statistical models or from reaction dynamics and might require examining the statistical model from a quantum mechanical perspective.



rate research

Read More

The energy spectra of light charged particles and intermediate mass fragments from 112Sn+112Sn and 124Sn+124Sn collisions at an incident energy of E/A=50 MeV have been measured with a large array of Silicon strip detectors. We used charged particle multiplicities detected in an array with nearly 4-pi coverage to select data from the central collision events. We study isospin observables analogous to ratios of neutron and proton spectra, including double ratios and yield ratios of t/3He and of asymmetries constructed from fragments with Z=3 to Z=8. Using the energy spectra, we can construct these observables as functions of kinetic energy. Most of the fragment asymmetry observables have a large sensitivity to sequential decays.
Nuclear reactions of interest for astrophysics and applications often rely on statistical model calculations for nuclear reaction rates, particularly for nuclei far from $beta$-stability. However, statistical model parameters are often poorly constrained, where experimental constraints are particularly sparse for exotic nuclides. For example, our understanding of the breakout from the NiCu cycle in the astrophysical rp-process is currently limited by uncertainties in the statistical properties of the proton-rich nucleus $^{60}$Zn. We have determined the nuclear level density of $^{60}$Zn using neutron evaporation spectra from $^{58}$Ni($^3$He, n) measured at the Edwards Accelerator Laboratory. We compare our results to a number of theoretical predictions, including phenomenological, microscopic, and shell model based approaches. Notably, we find the $^{60}$Zn level density is somewhat lower than expected for excitation energies populated in the $^{59}$Cu(p,$gamma$)$^{60}$Zn reaction under rp-process conditions. This includes a level density plateau from roughly 5-6 MeV excitation energy, which is counter to the usual expectation of exponential growth and all theoretical predictions that we explore. A determination of the spin-distribution at the relevant excitation energies in $^{60}$Zn is needed to confirm that the Hauser-Feshbach formalism is appropriate for the $^{59}$Cu(p,$gamma$)$^{60}$Zn reaction rate at X-ray burst temperatures.
The nuclear level density of $^{115}$Sn has been measured in an excitation energy range of $sim $2 - 9 MeV using the experimental neutron evaporation spectra from the $^{115}$In($p,n$)$^{115}$Sn reaction. The experimental level densities were compared with the microscopic Hartree-Fock BCS (HFBCS), Hartree-Fock-Bogoliubov plus combinatorial (HFB+C), and an exact pairing plus independent particle model (EP+IPM) calculations. It is observed that the EP+IPM provides the most accurate description of the experimental data. The thermal properties (entropy and temperature) of $^{115}$Sn have been investigated from the measured level densities. The experimental temperature profile as well as the calculated heat capacity show distinct signatures of a transition from the strongly-paired nucleonic phase to the weakly paired one in this nucleus.
133 - N. Frank , A. Schiller , D. Bazin 2007
A new method to reconstruct charged fragment four-momentum vectors from measured trajectories behind an open, large gap, magnetic dispersion element (a sweeper magnet) has been developed. In addition to the position and angle behind the magnet it includes the position measurement in the dispersive direction at the target. The method improves the energy and angle resolution of the reconstruction significantly for experiments with fast rare isotopes, where the beam size at the target position is large.
295 - D. Gruyer 2012
Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا