Do you want to publish a course? Click here

Solving Parity Games on Integer Vectors

153   0   0.0 ( 0 )
 Added by Richard Mayr
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We consider parity games on infinite graphs where configurations are represented by control-states and integer vectors. This framework subsumes two classic game problems: parity games on vector addition systems with states (vass) and multidimensional energy parity games. We show that the multidimensional energy parity game problem is inter-reducible with a subclass of single-sided parity games on vass where just one player can modify the integer counters and the opponent can only change control-states. Our main result is that the minimal elements of the upward-closed winning set of these single-sided parity games on vass are computable. This implies that the Pareto frontier of the minimal initial credit needed to win multidimensional energy parity games is also computable, solving an open question from the literature. Moreover, our main result implies the decidability of weak simulation preorder/equivalence between finite-state systems and vass, and the decidability of model checking vass with a large fragment of the modal mu-calculus.



rate research

Read More

2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states.
118 - Olivier Finkel 2008
Some decidable winning conditions of arbitrarily high finite Borel complexity for games on finite graphs or on pushdown graphs have been recently presented by O. Serre in [ Games with Winning Conditions of High Borel Complexity, in the Proceedings of the International Conference ICALP 2004, LNCS, Volume 3142, p. 1150-1162 ]. We answer in this paper several questions which were raised by Serre in the above cited paper. We first show that, for every positive integer n, the class C_n(A), which arises in the definition of decidable winning conditions, is included in the class of non-ambiguous context free omega languages, and that it is neither closed under union nor under intersection. We prove also that there exists pushdown games, equipped with such decidable winning conditions, where the winning sets are not deterministic context free languages, giving examples of winning sets which are non-deterministic non-ambiguous context free languages, inherently ambiguous context free languages, or even non context free languages.
138 - Samuel Mimram 2010
Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic.
The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm based on progress measures, which allows us to reduce the space required from quasi-polynomial to nearly linear. Our key technical tools are a novel concept of ordered tree coding, and a succinct tree coding result that we prove using bounded adaptive multi-counters, both of which are interesting in their own right.
250 - Olivier Finkel 2013
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter Buchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter Buchi automaton A and a Buchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا