Do you want to publish a course? Click here

Dependence of Nebular Heavy-Element Abundance on H I Content for Spiral Galaxies

259   0   0.0 ( 0 )
 Added by Paul Robertson
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the galactic H I content and nebular log(O/H) for 60 spiral galaxies in the Moustakas et al. (2006) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log(O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a clusters effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.



rate research

Read More

192 - Yao-Yuan Mao 2015
Hierarchical structure formation implies that the number of subhalos within a dark matter halo depends not only on halo mass, but also on the formation history of the halo. This dependence on the formation history, which is highly correlated with halo concentration, can account for the super-Poissonian scatter in subhalo occupation at a fixed halo mass that has been previously measured in simulations. Here we propose a model to predict the subhalo abundance function for individual host halos, that incorporates both halo mass and concentration. We combine results of cosmological simulations with a new suite of zoom-in simulations of Milky Way-mass halos to calibrate our model. We show the model can successfully reproduce the mean and the scatter of subhalo occupation in these simulations. The implications of this correlation between subhalo abundance and halo concentration are further investigated. We also discuss cases in which inferences about halo properties can be affected if this correlation between subhalo abundance and halo concentration is ignored; in these cases our model would give a more accurate inference. We propose that with future deep surveys, satellite occupation in the low-mass regime can be used to verify the existence of halo assembly bias.
157 - Michael J. Longo 2009
In this article I extend an earlier study of spiral galaxies in the Sloan Digital Sky Survey (SDSS) to investigate whether the universe has an overall handedness. A preference for spiral galaxies in one sector of the sky to be left-handed or right-handed spirals would indicate a parity-violating asymmetry in the overall universe and a preferred axis. The previous study used 2616 spiral galaxies with redshifts <0.04 and identified handedness. The new study uses 15158 with redshifts <0.085 and obtains very similar results to the first with a signal exceeding 5 sigma, corresponding to a probability ~2.5x10-7 for occurring by chance. A similar asymmetry is seen in the Southern Galaxy spin catalog of Iye and Sugai. The axis of the dipole asymmetry lies at approx. (l, b) =(52 d, 68.5 d), roughly along that of our Galaxy and close to alignments observed in the WMAP cosmic microwave background distributions.
417 - Daniel Schaerer 2011
We highlight and discuss the importance of accounting for nebular emission in the SEDs of high redshift galaxies, as lines and continuum emission can contribute significantly or subtly to broad-band photometry. Physical parameters such as the galaxy age, mass, star-formation rate, dust attenuation and others inferred from SED fits can be affected to different extent by the treatment of nebular emission. We analyse a large sample of Lyman break galaxies from z~3-6, and show some main results illustrating e.g. the importance of nebular emission for determinations of the mass-SFR relation, attenuation and age. We suggest that a fairly large scatter in such relations could be intrinsic. We find that the majority of objects (~60-70%) is better fit with SEDs accounting for nebular emission; the remaining galaxies are found to show relatively weak or no emission lines. Our modeling, and supporting empirical evidence, suggests the existence of two categories of galaxies, starbursts and post-starbursts (lower SFR and older galaxies) among the LBG population, and relatively short star-formation timescales.
We analyze a suite of 33 cosmological simulations of the evolution of Milky Way-mass galaxies in low-density environments. Our sample spans a broad range of Hubble types at z=0, from nearly bulgeless disks to bulge-dominated galaxies. Despite the fact that a large fraction of the bulge is typically in place by z=1, we find no significant correlation between the morphology at z=1 and at z=0. The z=1 progenitors of disk galaxies span a range of morphologies, including smooth disks, unstable disks, interacting galaxies and bulge-dominated systems. By z=0.5, spiral arms and bars are largely in place and the progenitor morphology is correlated with the final morphology. We next focus on late-type galaxies with a bulge-to-total ratio B/T<0.3 at z=0. These show a correlation between B/T at z=0 and the mass ratio of the largest merger at z<2, as well as with the gas accretion rate at z>1. We find that the galaxies with the lowest B/T tend to have a quiet baryon input history, with no major mergers at z<2, and with a low and constant gas accretion rate that keeps a stable angular-momentum direction. More violent merger or gas accretion histories lead to galaxies with more prominent bulges. Most disk galaxies have a bulge Sersic index n<2. The galaxies with the highest bulge Sersic index tend to have histories of intense gas accretion and disk instability rather than active mergers.
154 - S. Villanova , G. Piotto , 2009
Helium has been proposed as the key element to interpret the observed multiple main sequences (MS), subgiant branches (SGB) and red giant branches (RGB), as well as the complex horizontal branch (HB) morphology in Globular Clusters (GC). However, up to now, He was never directly measured in suitable GC stars (8500<Teff<11500 K) with the purpose of verify this hypothesis. We studied 7 hot blue horizontal branch (BHB) stars (Teff<11500 K) in the GC NGC 6752 with the purpose to measure their Helium content. In addition Fe,Cr,Si,Ti,O,Na, and Ba abundances were measured. We could measure He abundance only for stars warmer than Teff=8500 K. All our targets with measurable He are zero age HB (ZAHB) objects and turned out to have a homogeneous He content with a mean value of Y=0.245+-0.012, compatible with the most recent measurements of the primordial He content of the Universe (Y~0.25). The whole sample of stars have a metallicity of [Fe/H]=-1.56+-0.03 and [alpha/Fe]=+0.21+-0.03. Our HB targets show the same Na-O anticorrelation identified among the TO-SGB-RGB stars. This is the first direct measurement of the He abundance for a significative sample of GC stars in a temperature regime where the He content is not altered by sedimentation processing or extreme mixing as suggested for the hottest, late helium flasher HB stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا