Do you want to publish a course? Click here

A diversity of progenitors and histories for isolated spiral galaxies

94   0   0.0 ( 0 )
 Added by Marie Martig
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze a suite of 33 cosmological simulations of the evolution of Milky Way-mass galaxies in low-density environments. Our sample spans a broad range of Hubble types at z=0, from nearly bulgeless disks to bulge-dominated galaxies. Despite the fact that a large fraction of the bulge is typically in place by z=1, we find no significant correlation between the morphology at z=1 and at z=0. The z=1 progenitors of disk galaxies span a range of morphologies, including smooth disks, unstable disks, interacting galaxies and bulge-dominated systems. By z=0.5, spiral arms and bars are largely in place and the progenitor morphology is correlated with the final morphology. We next focus on late-type galaxies with a bulge-to-total ratio B/T<0.3 at z=0. These show a correlation between B/T at z=0 and the mass ratio of the largest merger at z<2, as well as with the gas accretion rate at z>1. We find that the galaxies with the lowest B/T tend to have a quiet baryon input history, with no major mergers at z<2, and with a low and constant gas accretion rate that keeps a stable angular-momentum direction. More violent merger or gas accretion histories lead to galaxies with more prominent bulges. Most disk galaxies have a bulge Sersic index n<2. The galaxies with the highest bulge Sersic index tend to have histories of intense gas accretion and disk instability rather than active mergers.

rate research

Read More

126 - Michael J. Longo 2009
In this article I extend an earlier study of spiral galaxies in the Sloan Digital Sky Survey (SDSS) to investigate whether the universe has an overall handedness. A preference for spiral galaxies in one sector of the sky to be left-handed or right-handed spirals would indicate a parity-violating asymmetry in the overall universe and a preferred axis. The previous study used 2616 spiral galaxies with redshifts <0.04 and identified handedness. The new study uses 15158 with redshifts <0.085 and obtains very similar results to the first with a signal exceeding 5 sigma, corresponding to a probability ~2.5x10-7 for occurring by chance. A similar asymmetry is seen in the Southern Galaxy spin catalog of Iye and Sugai. The axis of the dipole asymmetry lies at approx. (l, b) =(52 d, 68.5 d), roughly along that of our Galaxy and close to alignments observed in the WMAP cosmic microwave background distributions.
[Abridged] We study the spectral properties of intermediate mass galaxies as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early-types (ellipticals), late-type (disk-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their SDSS g-r colour and use the spectral fitting code VESPA to calculate time-resolved star-formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star-formation in the last 500 Myr than blue late-type spirals by up to a factor of three, but share similar star-formation histories at earlier times. This decline in recent star-formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star-formation curtailed in the last 500 Myrs. The red late-type spirals are however still forming stars approximately 17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star-formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals. Blue ellipticals show similar star-formation histories as blue spirals (regardless of type), except they have formed less stars in the last 100 Myrs. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies.
Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations metallicity distribution functions and the distribution of alpha-elements-to-iron.
In this study, we have carried out a detailed, statistical analysis of isolated model galaxies, taking advantage of publicly available hierarchical galaxy formation models. To select isolated galaxies, we employ 2D methods widely used in the observational literature, as well as a more stringent 3D isolation criterion that uses the full 3D-real space information. In qualitative agreement with observational results, isolated model galaxies have larger fractions of late-type, star forming galaxies with respect to randomly selected samples of galaxies with the same mass distribution. We also find that the samples of isolated model galaxies typically contain a fraction of less than 15 per cent of satellite galaxies, that reside at the outskirts of their parent haloes where the galaxy number density is low. Projection effects cause a contamination of 2D samples of about 18 per cent, while we estimate a typical completeness of 65 per cent. Our model isolated samples also include a very small (few per cent) fraction of bulge dominated galaxies (B/T > 0.8) whose bulges have been built mainly by minor mergers. Our study demonstrates that about 65-70 per cent of 2D isolated galaxies that are classified as isolated at z = 0 have indeed been completely isolated since z = 1 and only 7 per cent have had more than 3 neighbours within a comoving radius of 1 Mpc. Irrespectively of the isolation criteria, roughly 45 per cent of isolated galaxies have experienced at least one merger event in the past (most of the mergers are minor, with mass ratios between 1:4 and 1:10). The latter point validates the approximation that isolated galaxies have been mainly influenced by internal processes.
We examine the reionization history of present-day galaxies by explicitly tracing the building blocks of halos from the Cosmic Reionization On Computers project. We track dark matter particles that belong to $z=0$ halos to trace the neutral fractions at corresponding positions during rapid global reionization. The resulting particle reionization histories allow us to explore different definitions of a halos reionization redshift and to account for the neutral content of the interstellar medium. Consistent with previous work, we find a systematic trend of reionization redshift with mass - present day halos with higher masses have earlier reionization times. Finally, we quantify the spread of reionization times within each halo, which also has a mass dependence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا