No Arabic abstract
We used a sample of GRBs detected by Fermi and Swift to reanalyze the correlation discovered by Amati et al. (2002) between Epi, the peak energy of the prompt GRB emission, and Eiso, the energy released by the GRB assuming isotropic emission. This correlation has been disputed by various authors, and our aim is to assess whether it is an intrinsic GRB property or the consequence of selection effects. We constructed a sample of Fermi GRBs with homogeneous selection criteria, and we studied their distribution in the Epi-Eiso plane. Our sample is made of 43 GRBs with a redshift and 243 GRBs without a redshift. We show that GRBs with a redshift follow a broad Epi-Eiso relation, while GRBs without a redshift show several outliers. We use these samples to discuss the impact of selection effects associated with GRB detection and with redshift measurement. We find that the Epi-Eiso relation is partly due to intrinsic GRB properties and partly due to selection effects. The lower right boundary of the Epi-Eiso relation stems from a true lack of luminous GRBs with low Epi. In contrast, the upper left boundary is attributed to selection effects acting against the detection GRBs with low Eiso and large Epi that appear to have a lower signal-to-noise ratio. In addition, we demonstrate that GRBs with and without a redshift follow different distributions in the Epi-Eiso plane. GRBs with a redshift are concentrated near the lower right boundary of the Epi-Eiso relation. This suggests that it is easier to measure the redshift of GRBs close to the lower Epi-Eiso boundary. In this context, we attribute the controversy about the reality of the Amati relation to the complex nature of this relation resulting from the combination of a true physical boundary and biases favoring the detection and the measurement of the redshift of GRBs located close to this boundary.
One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy Epeak) of the nu-F(nu) spectrum and the isotropic radiated energy, Eiso. Since most gamma-ray bursts (GRBs) have Epeak above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate Epeak values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected, one can accurately fit Epeak and Eiso and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of April 2009, there were 48 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 48 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.
We study the distribution of long Gamma Ray Bursts in the Ep-Eiso and in the Ep,obs-Fluence planes through an updated sample of 76 bursts, with measured redshift and spectral parameters, detected up to September 2007. We confirm the existence of a strong rest frame correlation Ep ~ Eiso^0.54+-0.01. Contrary to previous studies, no sign of evolution with redshift of the Ep-Eiso correlation (either its slope and normalisation) is found. The 76 bursts define a strong Ep,obs-Fluence correlation in the observer frame (Ep,obs ~ F^0.32+-0.05) with redshifts evenly distributed along this correlation. We study possible instrumental selection effects in the observer frame Ep,obs-Fluence plane. In particular, we concentrate on the minimum peak flux necessary to trigger a given GRB detector (trigger threshold) and the minimum fluence a burst must have to determine the value of Ep,obs (spectral analysis threshold). We find that the latter dominates in the Ep,obs-Fluence plane over the former. Our analysis shows, however, that these instrumental selection effects do not dominate for bursts detected before the launch of the Swift satellite, while the spectral analysis threshold is the dominant truncation effect of the Swift GRB sample (27 out of 76 events). This suggests that the Ep,obs-Fluence correlation defined by the pre--Swift sample could be affected by other, still not understood, selection effects. Besides we caution about the conclusions on the existence of the Ep,obs-Fluence correlation based on our Swift sample alone.
From past experiments the average power density spectrum (PDS) of GRBs with unknown redshift was found to be modelled from 0.01 to 1 Hz with a power-law, f^(-alpha), with alpha broadly consistent with 5/3. Recent analyses of the Swift/BAT catalogue showed analogous results in the 15-150 keV band. We carried out the same analysis on the bright GRBs detected by BeppoSAX/GRBM and Fermi/GBM. The BeppoSAX/GRBM data, in the energy range 40-700 keV and with 7.8 and 0.5-ms time resolutions, allowed us to explore for the first time the average PDS at very high frequencies (up to 1 kHz) and reveal a break around 1-2 Hz, previously found in CGRO/BATSE data. The Fermi/GBM data, in the energy band 8-1000 keV, allowed us to explore for the first time the average PDS within a broad energy range. Our results confirm and extend the energy dependence of the PDS slope, according to which harder photons have shallower PDS.
We present a direct link between the minimum variability time scales extracted through a wavelet decomposition and the rise times of the shortest pulses extracted via fits of 34 Fermi GBM GRB light curves comprised of 379 pulses. Pulses used in this study were fitted with log-normal functions whereas the wavelet technique used employs a multiresolution analysis that does not rely on identifying distinct pulses. By applying a corrective filter to published data fitted with pulses we demonstrate agreement between these two independent techniques and offer a method for distinguishing signal from noise.
Studying the GRBs gamma-ray spectra may reveal some physical information of Gamma-ray Bursts. The Fermi satellite observed more than two thousand GRBs. The FERMIGBRST catalog contains GRB parameters (peak energy, spectral indices, intensity) estimated for both the total emission (fluence), and the emission during the interval of the peak flux. We found a relationship with linear discriminant analysis between the spectral categories and the model independent physical data. We compared the Swift and Fermi spectral types. We found a connection between the Fermi fluence spectra and the Swift spectra but the result of the peak flux spectra can be disputable. We found that those GRBs which were observed by both Swift and Fermi can similarly discriminate as the complete Fermi sample. We concluded that the common observation probably did not mean any trace of selection effects in the spectral behavior of GRBs.