No Arabic abstract
Studying the GRBs gamma-ray spectra may reveal some physical information of Gamma-ray Bursts. The Fermi satellite observed more than two thousand GRBs. The FERMIGBRST catalog contains GRB parameters (peak energy, spectral indices, intensity) estimated for both the total emission (fluence), and the emission during the interval of the peak flux. We found a relationship with linear discriminant analysis between the spectral categories and the model independent physical data. We compared the Swift and Fermi spectral types. We found a connection between the Fermi fluence spectra and the Swift spectra but the result of the peak flux spectra can be disputable. We found that those GRBs which were observed by both Swift and Fermi can similarly discriminate as the complete Fermi sample. We concluded that the common observation probably did not mean any trace of selection effects in the spectral behavior of GRBs.
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalog contains GRB parameters (peak energy, spectral indices, intensity) estimated fitting the gamma-ray SED of the total emission (fluence, flnc), and during the time of the peak flux pflx. Using contingency tables we studied the relationship of the models best fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis (CA) of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low energy spectral index is close to the canonical value of {alpha} = -2/3 during the peak flux. However, $alpha$ is ~ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
We present a search for gamma-ray bursts in the Fermi-GBM 10 year catalog that show similar characteristics to GRB 170817A, the first electromagnetic counterpart to a GRB identified as a binary neutron star (BNS) merger via gravitational wave observations. Our search is focused on a non-thermal pulse, followed by a thermal component, as observed for GRB 170817A. We employ search methods based on the measured catalog parameters and Bayesian Block analysis. Our multi-pronged approach, which includes examination of the localization and spectral properties of the thermal component, yields a total of 13 candidates, including GRB 170817A and the previously reported similar burst, GRB 150101B. The similarity of the candidates is likely caused by the same processes that shaped the gamma-ray signal of GRB 170817A, thus providing evidence of a nearby sample of short GRBs resulting from BNS merger events. Some of the newly identfied counterparts were observed by other space telescopes and ground observatories, but none of them have a measured redshift. We present an analysis of this sub-sample, and we discuss two models. From uncovering 13 candidates during a time period of ten years we predict that Fermi-GBM will trigger on-board on about one burst similar to GRB 170817A per year.
From past experiments the average power density spectrum (PDS) of GRBs with unknown redshift was found to be modelled from 0.01 to 1 Hz with a power-law, f^(-alpha), with alpha broadly consistent with 5/3. Recent analyses of the Swift/BAT catalogue showed analogous results in the 15-150 keV band. We carried out the same analysis on the bright GRBs detected by BeppoSAX/GRBM and Fermi/GBM. The BeppoSAX/GRBM data, in the energy range 40-700 keV and with 7.8 and 0.5-ms time resolutions, allowed us to explore for the first time the average PDS at very high frequencies (up to 1 kHz) and reveal a break around 1-2 Hz, previously found in CGRO/BATSE data. The Fermi/GBM data, in the energy band 8-1000 keV, allowed us to explore for the first time the average PDS within a broad energy range. Our results confirm and extend the energy dependence of the PDS slope, according to which harder photons have shallower PDS.
We perform a stringent search for precursor emission of short gamma-ray bursts (SGRBs) from the Fermi/GBM data and find 16 precursor events with $gtrsim4.5sigma$ significance. We find that the durations of the main SGRB emission ($T_{rm GRB}$) and the precursor emission ($T_{rm pre}$), as well as the waiting time ($T_{rm wt}$) in between, are roughly comparable to each other, with $T_{rm wt}approx2.8T_{rm GRB}^{1.2}$ approximately satisfied for most cases except one significant outlier. We also perform spectral analyses to the precursors and SGRBs, and find that the spectra of precursor emission can be fitted with the blackbody, non-thermal cutoff power law and/or power law models. We consider several possible models for precursor emission in SGRBs and find that the luminosity and spectral shape may be explained by the the shock breakout or the photospheric radiation of a fireball launched after the merger for thermal precursors, or magnetospheric interaction between two NSs prior to the merger for non-thermal precursors. For the fireball photospheric model, a matter-dominated jet is preferred and a constraint on the fireball Lorentz factor can be placed as $Gammasim30$. For the magnetospheric interaction model, jet launching mechanism may be constrained. In particular, those events with $T_{rm wt}/T_{rm GRB}gg1$ (e.g. GRB191221802) require the formation of a supramassive or stable neutron star after the merger, with the delay time defined by the timescale for an initially baryon-loaded jet to become magnetically dominated and relativistic.
Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here we present the Fermi/GBM magnetar catalog, giving the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from July 2008 to June 2013. We provide durations, spectral parameters for various models, fluences and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550-5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.