Do you want to publish a course? Click here

Affine group formulation of the Standard Model coupled to gravity

106   0   0.0 ( 0 )
 Added by Eyo Ita III
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work demonstrates that a complete description of the interaction of matter and all forces, gravitational and non-gravitational, can in fact be realized within a quantum affine algebraic framework. Using the affine group formalism, we construct elements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant.



rate research

Read More

We systematically derive an action for a nonrelativistic spinning partile in flat background and discuss its canonical formulation in both Lagrangian and Hamiltonian approaches. This action is taken as the starting point for deriving the corresponding action in a curved background. It is achieved by following our recently developed technique of localising the flat space galilean symmetry cite{BMM1, BMM3, BMM2}. The coupling of the spinning particle to a Newton-Cartan background is obtained naturally. The equation of motion is found to differ from the geodesic equation, in agreement with earlier findings. Results for both the flat space limit and the spinless theory (in curved background) are reproduced. Specifically, the geodesic equation is also obtained in the latter case.
A detailed canonical treatment of a new action for a nonrelativistic particle coupled to background gravity, recently given by us, is performed both in the Lagrangian and Hamiltonian formulations. The equation of motion is shown to satisfy the geodesic equation in the Newton-Cartan background, thereby clearing certain confusions. The Hamiltonian analysis is done in the gauge independent as well as gauge fixed approaches, following Diracs analysis of constraints. The physical (canonical) variables are identified and the path to canonical quantisation is outlined by explicitly deriving the Schroedinger equation.
Within the context of the Ashtekar variables, the Hamiltonian constraint of four-dimensional pure General Relativity with cosmological constant, $Lambda$, is reexpressed as an affine algebra with the commutator of the imaginary part of the Chern-Simons functional, $Q$, and the positive-definite volume element. This demonstrates that the affine algebra quantization program of Klauder can indeed be applicable to the full Lorentzian signature theory of quantum gravity with non-vanishing cosmological constant; and it facilitates the construction of solutions to all of the constraints. Unitary, irreducible representations of the affine group exhibit a natural Hilbert space structure, and coherent states and other physical states can be generated from a fiducial state. It is also intriguing that formulation of the Hamiltonian constraint or Wheeler-DeWitt equation as an affine algebra requires a non-vanishing cosmological constant; and a fundamental uncertainty relation of the form $frac{Delta{V}}{<{V}>}Delta {Q}geq 2pi Lambda L^2_{Planck}$ (wherein $V$ is the total volume) may apply to all physical states of quantum gravity.
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
A spin-foam model is derived from the canonical model of Loop Quantum Gravity coupled to a massless scalar field. We generalized to the full theory the scheme first proposed in the context of Loop Quantum Cosmology by Ashtekar, Campiglia and Henderson, later developed by Henderson, Rovelli, Vidotto and Wilson-Ewing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا